首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report the characterization of three mutants of simian virus 40 with mutations that delete sequences near the 3' end of the gene encoding large tumor antigen (T antigen). Two of these mutants, dl1066 and dl1140, exhibit an altered viral host range. Wild-type simian virus 40 is capable of undergoing a complete productive infection on several types of established African green monkey kidney lines, including BSC40 and CV1P. dl1066 and dl1140 grow on BSC40 cells at 37 degrees C. However, both mutants fail to form plaques on BSC40 cells at 32 degrees C or on CV1P cells at any temperature. These mutants are capable of replicating viral DNA in the nonpermissive cell type, indicating a defect in an activity of T antigen not related to its replication function. Furthermore this defect can be complemented in trans by the wild type or by a variety of DNA replication-negative T antigen mutants, so long as they produce a normal carboxyl-terminal region of the molecule. Our data are consistent with the hypothesis that the C-terminal region of T antigen constitutes a functional domain. We propose that this domain encodes an activity that is required for simian virus 40 productive infection on the CV1P cell line, but not on BSC40.  相似文献   

2.
Simian virus 40 maturation in cells harboring mutants deleted in the agnogene   总被引:13,自引:0,他引:13  
The predominant leader region of the late 16 S mRNAs of simian virus 40 encodes a histone-like, 61-amino acid, DNA-binding protein called the agnoprotein or LP1. To test the hypothesis that this protein facilitates assembly of viral minichromosomes into virions, we have studied the synthesis of virions in cells infected with mutants deleted in this region of the SV40 genome. We found that 220 S mature virions, indistinguishable from those of wild type, were produced in cells infected with these mutants. As in wild-type-infected cells, no assembly intermediates other than 75 S chromatin were observed. However, data obtained from both steady-state and pulse-chase labeling experiments indicated that cells infected with agnogene deletion mutants produced virions more slowly than cells infected with wild-type virus. Taken together with data showing that similar levels of virion proteins were present in the wild-type- and mutant-infected cells, these findings strongly suggest that LP1 plays a role in expediting virion assembly.  相似文献   

3.
Summary SV40 viruses bearing mutations at the carboxy-terminus of large T antigen exhibit a host-range phenotype: such viruses are able to grow in BSC monkey kidney cells at 37° C, but give at least 10 000-fold lower yields than wild type virus in BSC cells at 32° C or in CV1 monkey kidney cells at either temperature. The block to infection in the nonpermissive cell type occurs after the onset of viral DNA replication. Infectious progeny virions are produced at very low efficiency. Although capsid proteins are synthesized at decreased levels, this does not account for the magnitude of the defect. Presumably some step of virion assembly or maturation is affected in these mutants. We have previously reported that the viral agnogene product, a protein throught to be involved in viral assembly or release, fails to accumulate in CV1 cells infected with host-range mutants. In polyoma virus the middle T antigen plays a role in virion maturation by influencing the phosphorylation of capsid proteins. In this communication we show that host-range mutants fail to undergo productive infection of CV1 cells expressing middle T antigen. These mutants do form plaques on an agnoprotein-expressing cell line. However, the agnoprotein does not seem to act by correcting the mutational block but rather increases the efficiency of plaque formation. This work was supported by grants CA40586 and BRSG 2S07RR07084-23 to J. M. P. and grant CA33079 to L. T., from the National Institutes of Health, Bethesda, MD.  相似文献   

4.
Two cell clones were isolated from the simian line CV1, permissive for simian virus 40 (SV40), by selection at low temperature with the tsA239 mutant of SV40. These clones exhibited cold-sensitive semipermissivity to both SV40 virions and SV40 DNA. On the basis of virus yields, their resistance to viral DNA was increased approximately 15 times over that of CV1 cells when the incubation temperature was lowered from 38.5 to 33.5 degrees C. A further 30- to 40-fold resistance increase was exhibited at both temperatures upon infection with SV40 virions. Partial characterization of these clones indicated that the cold sensitivity affected an early function in viral growth, between viral uncoating and the appearance of T-antigen positivity, with a burst-size decrease in all cells at the restricted temperature. This conditional defect appeared to be superimposed upon a temperature-independent uncoating defect, presumably carried in a CV1 subpopulation from which the two clones were ultimately selected.  相似文献   

5.
Simian virus 40 chromatin interaction with the capsid proteins   总被引:7,自引:0,他引:7  
It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40 degrees C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100-160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100-160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40 degrees C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface.  相似文献   

6.
Abstract

It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40°C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100–160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100–160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40°C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface.  相似文献   

7.
SV40 belongs to a group of DNA tumor viruses which induce the expression of the 70 Kd heat shock proteins, but the meaning of this induction remains unclear. Investigating the role of hsc70 in the SV40 life cycle, we found that the protein translocates to the nucleus late in infection of permissive CV1 cells, in contrast to infected nonpermissive BALB/3T3 and NIH/3T3 cells in which hsc70 remains cytoplasmic. Moreover, the pattern of hsc70 nuclear staining was diffused and clearly distinguishable from that observed after heat shock. In addition hsc70 late in infection coimmunoprecipitated with the viral capsid protein VP1, suggesting a role in the process of viral packaging. Interactions of hsc70 with the early viral oncoprotein T antigen were observed only in nonpermissive cells, indicating that the binding of the above proteins is specific to cells that do not support viral propagation. Finally, treatment of permissive CV1 cells with interferon gamma, a known antiviral cytokine, resulted in hsc70 binding to T antigen. Our results suggest that the role of hsc70 in the process of SV40 infection is directly related to the ability of the host cells to support viral propagation and is clearly different between permissive and nonpermissive cell lines.  相似文献   

8.
Passage of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 at the permissive temperature in each of three permissive lines of SV40-transformed monkey CV1 cells resulted in the emergence of temperature-insensitive virus, which plated like wild-type SV40 at the restrictive temperature on normal CV1 cells. In independent experiments, the amount of temperature-insensitive virus that appeared after passage on transformed cells was from 10(3)- to 10(6)-fold greater than the amount of ts-revertant virus that appeared after an equal number of passages in nontransformed CV1 cells. The virus rescued by passage on transformed cells bred true upon sequential plaque purification, plated on normal CV1 cells with single-hit kinetics at the restrictive temperature, and displayed no selective growth advantage on transformed cells compared to non-transformed cells. Hence, the reversion of the ts phenotype is neither due to complementation effects nor to the selection of preexisting revertants, which grow better on transformed cells. In the accompanying article (T. Vogel et al., J. Virol. 24:541-550, 1977), we present biochemical evidence that the rescue of tsD202 mediated by passage on transformed cells is due to recombination with the resident SV40 genome. Parallel experiments in which tsA, tsB, and tsC SV40 mutants were passaged in each of the three permissive lines of SV40-transformed monkey cells resulted in either only borderline levels of rescue (tsA mutants) or no detectable rescue (tsB and tsC mutants). Evidence is presented that the resident SV40 genome of the transformed monkey lines is itself a late ts mutant, and we suggest that this accounts for the lack of detectable rescue of the tsB and tsC mutants. We furthermore suggest that the borderline level of rescue observed with two tsA mutants is related to a previous finding (Y. Gluzman et al., J. Virol. 22:256-266, 1977) which indicated that the resident SV40 genome of the permissive transformed monkey cells is defective in the function required for initiation of viral DNA synthesis.  相似文献   

9.
T Stacy  M Chamberlain    C N Cole 《Journal of virology》1989,63(12):5208-5215
Simian virus 40 (SV40) deletion mutants dlA2459 and dlA2475 express T antigens that lack the normal carboxy terminus. These mutants are called host range/helper function (hr/hf) mutants because they form plaques at 37 degrees C on BSC-1 and Vero monkey kidney cell lines but not on CV-1p monkey kidney cells. Wild-type SV40 can provide a helper function to permit growth of human adenoviruses in monkey kidney cells; the hr/hf mutants cannot. Progeny yields of hr/hf mutants are also cold sensitive in all cell lines tested. Patterns of viral macromolecular synthesis in three cell lines (Vero, BSC-1, and CV-1) at three temperatures (40, 37, and 32 degrees C) were examined to determine the nature of the growth defect of hr/hf mutants. Mutant viral DNA replication was similar to that of the wild type in all three cell lines, indicating that the mutations affect late events in the viral lytic cycle. In mutant-infected Vero cells, in which viral yields were highest, late mRNA levels were similar to those observed during wild-type infection. Levels of viral late mRNA from mutant-infected CV-1 and BSC-1 cells at 32 and 37 degrees C were reduced relative to those of wild-type-infected cells. The steady-state level of the major viral capsid protein, VP1, in mutant-infected CV-1 cells was reduced to the same extent as was late mRNA. The synthesis of agnoprotein could not be detected in mutant-infected CV-1 cells but was readily detected in CV-1 cells infected by wild-type SV40. Primer extension analyses indicated that most late mRNAs from mutant-infected CV-1 cells utilize start sites downstream from the major wild-type cap site (nucleotide 325) and the agnoprotein initiation codon (nucleotide 335). These results indicate that deletion of the carboxyl-terminal domain of T antigen affects viral late mRNA production, both quantitatively and qualitatively. The agnoprotein is detected late in the wild-type SV40 lytic cycle and is thought to play a role in the assembly or maturation of virions. Reduced hr/hf progeny yields could result from decreased capsid protein synthesis and, in the absence of detectable levels of agnoprotein, from inefficient use of available capsid proteins.  相似文献   

10.
African green monkey cells (CV1 line) were infected with UV-irradiated simian virus 40 (SV40), and permissive lines of stably transformed cells were established. These cell lines display the SV40 T-antigen and the growth characteristics typical of nonpermissive transformed cells (e.g., reduced cell density inhibition, reduced serum dependence, ability to overgrow normal cells, and colony formation in soft agar). The level of permissiveness to superinfecting SV40 is fully comparable with that of nontransformed CV1 and BSC-1 lines. The transformed monkey lines also support SV40 plaque production under agar. By Cot analysis, the transformed permissive cells contain, on an average, 1 to 2 SV40 genome equivalents, and the majority of the viral sequences are associated with the high-molecular-weight cellular DNA. No spontaneous production of infectious SV40 has been observed. The transformed permissive monkey cells failed to support the replication of SV40 tsA mutants at the restrictive temperature. To account for this, it is suggested that the gene A product has separate functions for transformation and initiation of viral DNA synthesis, and only the former function is expressed in the transformed permissive monkey cells.  相似文献   

11.
J Cornelis  Z Z Su  C Dinsart  J Rommelaere 《Biochimie》1982,64(8-9):677-680
The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.  相似文献   

12.
The structures of DNAs present in various intracellular forms of simian virus 40 (SV40) nucleoprotein complexes were analyzed by micrococcal nuclease digestion. The results showed that the 70S SV40 chromatin was completely sensitive to nuclease digestion, whereas CsCl gradient-purified mature virion was completely resistant. Virion assembly intermediates with different degrees of virion maturation showed intermediate resistance, and three products were found: nucleosomal DNA fragments, representing the fraction of intermediates that were sensitive to nuclease; linear SV40 genome-sized DNA, representing the more mature intermediates that contained one or limited defects in the capsid shell; and supercoiled SV40, which was derived from mature virions. These digestion products, however, remained associated with capsid shells after nuclease digestion. These results were consistent with the model in which maturation of the SV40 virion is achieved through the organization of capsid proteins that accumulate around SV40 chromatin. Mild digestion of SV40 nucleoprotein complexes with micrococcal nuclease revealed the difference in nucleosome repeat length between SV40 chromatin and virion assembly intermediates. A novel DNA fragment of about 75 nucleotides was observed early in nuclease digestion.  相似文献   

13.
The simian virus 40 (SV40) large-T antigen is essential for SV40 DNA replication and for late viral gene expression, but the role of the SV40 small-t antigen in these processes is still unclear. We have previously demonstrated that small t inhibits SV40 DNA replication in vitro. In this study, we investigated the effect of small t on SV40 replication in cultured cells. CV1 monkey cell infection experiments indicated that mutant viruses that lack small t replicate less efficiently than the wild-type virus. We next microinjected CV1 cells with SV40 DNA with and without purified small-t protein and analyzed viral DNA replication efficiency by Southern blotting. Replication of either wild-type SV40 or small-t deletion mutant DNA was increased three- to fivefold in cells coinjected with purified small t. Thus, in contrast to our in vitro observation, small t stimulated viral DNA replication in vivo. This result suggests that small t has cellular effects that are not detectable in a reconstituted in vitro replication system. We also found that small t stimulated progression of permissive monkey cells--but not of nonpermissive rodent cells--from G0-G1 to the S phase of the cell cycle, possibly leading to an optimal intracellular environment for viral replication.  相似文献   

14.
An endonucleolytic activity associated with purified simian virus 40 (SV40) virions has been found. The enzyme is present in virions prepared from a number of different host lines. The enzyme is present in all early and late temperature-sensitive mutants examined. Some aspects of the endonucleolytic activity have been examined with SV40 deoxyribonucleic acid as substrate.  相似文献   

15.
Nonenveloped viruses are generally released by the timely lysis of the host cell by a poorly understood process. For the nonenveloped virus SV40, virions assemble in the nucleus and then must be released from the host cell without being encapsulated by cellular membranes. This process appears to involve the well-controlled insertion of viral proteins into host cellular membranes rendering them permeable to large molecules. VP4 is a newly identified SV40 gene product that is expressed at late times during the viral life cycle that corresponds to the time of cell lysis. To investigate the role of this late expressed protein in viral release, water-soluble VP4 was expressed and purified as a GST fusion protein from bacteria. Purified VP4 was found to efficiently bind biological membranes and support their disruption. VP4 perforated membranes by directly interacting with the membrane bilayer as demonstrated by flotation assays and the release of fluorescent markers encapsulated into large unilamellar vesicles or liposomes. The central hydrophobic domain of VP4 was essential for membrane binding and disruption. VP4 displayed a preference for membranes comprised of lipids that replicated the composition of the plasma membranes over that of nuclear membranes. Phosphatidylethanolamine, a lipid found at high levels in bacterial membranes, was inhibitory against the membrane perforation activity of VP4. The disruption of membranes by VP4 involved the formation of pores of ~3 nm inner diameter in mammalian cells including permissive SV40 host cells. Altogether, these results support a central role of VP4 acting as a viroporin in the perforation of cellular membranes to trigger SV40 viral release.  相似文献   

16.
The distribution of DNA topoisomers in intracellular simian virus 40 DNA was analyzed by gel electrophoresis. The results suggested that DNA extracted from 70S chromatin had a different superhelical density distribution as compared with the DNA obtained from virions or virion assembly intermediates. The heterogeneity of simian virus 40 viral DNA superhelical density at a late time after infection was partly due to increased virion production and partly due to the intrinsic heterogeneity of the superhelical density of DNA extracted from virions. Using two-dimensional gel electrophoretic analysis we also showed that simian virus 40 DNA templates used for DNA replication have a higher average superhelical density than the bulk of intracellular viral DNA.  相似文献   

17.
18.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

19.
Extraction of the purified nuclei of SV40 infected cells reveals a heterogeneous set of viral DNA-protein complexes. Earlier, the authors have shown the possibility of nuclear particles extraction being indistinguishable from mature SV40 virions. In the present work, structural intermediates of virus maturation from free minichromosomes through replicative complexes to immature virion particles have been analyzed. The fractionation of viral complexes by non-denaturing agarose gel electrophoresis has been employed. The protein composition of the complexes as determined by two-dimensional gel electrophoresis indicates that five histone fractions including H1 are present during minichromosome maturation to the chromosome of the mature virion.  相似文献   

20.
Simian Virus 40 Deoxyribonucleic Acid Synthesis: the Viral Replicon   总被引:236,自引:137,他引:99       下载免费PDF全文
Three temperature-sensitive (ts) mutants of simian virus 40 (SV40) in complementation group A (tsA7, tsA28, tsA30) have been isolated and characterized in permissive and restrictive host cells. At 41 C in the AH line of African green monkey kidney cells, the mutants are deficient in an early function required to produce infectious viral deoxyribonucleic acid (DNA). Temperature-shift experiments and analysis of SV40 viral DNA replication by gel electrophoresis have provided strong evidence that the ts gene product of the three mutants is directly required to initiate each new round of viral DNA replication but is not required to complete a cycle which has already begun. The synthesis of mutant DNA molecules themselves can be initiated by a nonmutant gene product in viral complementation studies at 41 C. The cell, however, cannot substitute a host function to provide the initiator required for the replication of free viral DNA. The viral initiator is also required to establish the stable transformation of 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号