首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simian virus 40 chromatin interaction with the capsid proteins
Authors:M Bina  S C Ng  V Blasquez
Institution:Purdue University, Department of Chemistry, West Lafayette, Indiana 47907.
Abstract:It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40 degrees C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100-160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100-160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40 degrees C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号