首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

2.
The Saccharomyces cerevisiae F(1)F(0)-ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane-spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F(1). In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporated into a functional F(1)F(0)-ATP synthase. The differences in subunit structure between the eukaryotic and prokaryotic peripheral stalks raised a question about whether the two stalks have similar physical and functional properties. In the present work, the length of the S. cerevisiae b subunit has been manipulated to determine whether the F(1)F(0)-ATP synthase exhibited the same tolerances as in the bacterial enzyme. Plasmid shuffling was used for ectopic expression of altered b subunits in a strain carrying a chromosomal disruption of the ATP4 gene. Wild type growth phenotypes were observed for insertions of up to 11 and a deletion of four amino acids on a nonfermentable carbon source. In mitochondria-enriched fractions, abundant ATP hydrolysis activity was seen for the insertion mutants. ATPase activity was largely oligomycin-insensitive in these mitochondrial fractions. In addition, very poor complementation was seen in a mutant with an insertion of 14 amino acids. Lengthier deletions yielded a defective enzyme. The results suggest that although the eukaryotic peripheral stalk is near its minimum length, the b subunit can be extended a considerable distance.  相似文献   

3.
In Escherichia coli, a parallel homodimer of identical b subunits constitutes the peripheral stalk of F(1)F(0) ATP synthase. Although the two b subunits have long been viewed as a single functional unit, the asymmetric nature of the enzyme complex suggested that the functional roles of each b subunit should not necessarily be considered equivalent. Previous mutagenesis studies of the peripheral stalk suffered from the fact that mutations in the uncF(b) gene affected both of the b subunits. We developed a system to express and study F(1)F(0) ATP synthase complexes containing two different b subunits. Two mutations already known to inactivate the F(1)F(0) ATP synthase complex have been studied using this experimental system. An evolutionarily conserved arginine, b(Arg-36), was known to be crucial for F(1)F(0) ATP synthase function, and the last four C-terminal amino acids had been shown to be important for enzyme assembly. Experiments expressing one of the mutants with a wild type b subunit demonstrated the presence of heterodimers in F(1)F(0) ATP synthase complexes. Activity assays suggested that the heterodimeric F(1)F(0) complexes were functional. When the two defective b subunits were expressed together and in the absence of any wild type b subunit, an active F(1)F(0) ATP synthase complex was assembled. This mutual complementation between fully defective b subunits indicated that each of the two b subunits makes a unique contribution to the functions of the peripheral stalk, such that one mutant b subunit is making up for what the other is lacking.  相似文献   

4.
The peripheral stalk of the mitochondrial ATP synthase   总被引:9,自引:0,他引:9  
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.  相似文献   

5.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

6.
Weber J 《Biochimica et biophysica acta》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral "stator stalk", which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2delta; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit delta (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.  相似文献   

7.
Two stalks link the F(1) and F(0) sectors of ATP synthase. The central stalk contains the gamma and epsilon subunits and is thought to function in rotational catalysis as a rotor driving conformational changes in the catalytic alpha(3)beta(3) complex. The two b subunits and the delta subunit associate to form b(2)delta, a second, peripheral stalk extending from the membrane up the side of alpha(3)beta(3) and binding to the N-terminal regions of the alpha subunits, which are approx. 125 A from the membrane. This second stalk is essential for binding F(1) to F(0) and is believed to function as a stator during rotational catalysis. In vitro, b(2)delta is a highly extended complex held together by weak interactions. Recent work has identified the domains of b which are essential for dimerization and for interaction with delta. Disulphide cross-linking studies imply that the second stalk is a permanent structure which remains associated with one alpha subunit or alphabeta pair. However, the weak interactions between the polypeptides in b(2)delta pose a challenge for the proposed stator function.  相似文献   

8.
Peng G  Bostina M  Radermacher M  Rais I  Karas M  Michel H 《FEBS letters》2006,580(25):5934-5940
The F(1)F(0) ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F(1) and subunits a and c of F(0). Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F(1) and F(0). In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the delta subunit.  相似文献   

9.
Two of the distinct diversities of the engines A(1)A(O) ATP synthase and F(1)F(O) ATP synthase are the existence of two peripheral stalks and the 24kDa stalk subunit E inside the A(1)A(O) ATP synthase. Crystallographic structures of subunit E have been determined recently, but the epitope(s) and the strength to which this subunit does bind in the enzyme complex are still a puzzle. Using the recombinant A(3)B(3)D complex and the major subunits A and B of the methanogenic A(1)A(O) ATP synthase in combination with fluorescence correlation spectroscopy (FCS) we demonstrate, that the stalk subunit E does bind to the catalytic headpiece formed by the A(3)B(3) hexamer with an affinity (K(d)) of 6.1±0.2μM. FCS experiments with single A and B, respectively, demonstrated unequivocally that subunit E binds stronger to subunit B (K(d)=18.9±3.7μM) than to the catalytic A subunit (K(d)=53.1±4.4). Based on the crystallographic structures of the three subunits A, B and E available, the arrangement of the peripheral stalk subunit E in the A-B interface has been modeled, shining light into the A-B-E assembly of this enzyme.  相似文献   

10.
A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escherichia coli. The atp1 gene cluster is at least 10 kilobase pairs distant in the genome from apt2, a cluster of genes encoding the beta (atpB) and epsilon (atpE) subunits of the ATP synthase. This two-clustered ATP synthase gene arrangement is intermediate between those found in chloroplasts and E. coli. A unique feature of the Anabaena atp1 cluster is overlap between the coding regions for atpF and atpD. The atp1 cluster is transcribed as a single 7-kilobase polycistronic mRNA that initiates 140 base pairs upstream of gene 1. The deduced translation products for the Anabaena sp. strain PCC 7120 subunit genes are more similar to chloroplast ATP synthase subunits than to those of E. coli.  相似文献   

11.
A dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP synthase. Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat pattern, implying a right-handed coiled coil structure. We investigated the potential for producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing parts of its sequence with corresponding regions of the b subunits from other eubacteria, sequences from other polypeptides having similar hendecad patterns, and sequences forming left-handed coiled coils. Replacement of positions 55-110 with corresponding sequences from Bacillus subtilis and Thermotoga maritima b subunits resulted in fully functional chimeras, judged by support of growth on nonfermentable carbon sources. Extension of the T. maritima sequence N-terminally to position 37 or C-terminally to position 124 resulted in slower but significant growth, indicating retention of some capacity for oxidative phosphorylation. Portions of the dimerization domain between 55 and 95 could be functionally replaced by segments from two other proteins having a hendecad pattern, the distantly related E subunit of the Chlamydia pneumoniae V-type ATPase and the unrelated Ag84 protein of Mycobacterium tuberculosis. Extension of such sequences to position 110 resulted in loss of function. None of the chimeras that incorporated the leucine zipper of yeast GCN4, or other left-handed coiled coils, supported oxidative phosphorylation, but substantial ATP-dependent proton pumping was observed in membrane vesicles prepared from cells expressing such chimeras. Characterization of chimeric soluble b polypeptides in vitro showed their retention of a predominantly helical structure. The T. maritima b subunit chimera melted cooperatively with a midpoint more than 20 degrees C higher than the normal E. coli sequence. The GCN4 construct melted at a similarly high temperature, but with much reduced cooperativity, suggesting a degree of structural disruption. These studies provide insight into the structural and sequential requirements for stator stalk function.  相似文献   

12.
The peripheral stalk of F1F0 ATP synthase is essential for the binding of F1 to FO and for proper transfer of energy between the two sectors of the enzyme. The peripheral stalk of Escherichia coli is composed of a dimer of identical b subunits. In contrast, photosynthetic organisms express two b-like genes that form a heterodimeric peripheral stalk. Previously we generated chimeric peripheral stalks in which a portion of the tether and dimerization domains of the E. coli b subunits were replaced with homologous sequences from the b and b′ subunits of Thermosynechococcus elongatus (Claggett, S. B., Grabar, T. B., Dunn, S. D., and Cain, B. D. (2007) J. Bacteriol. 189, 5463–5471). The spatial arrangement of the chimeric b and b′ subunits, abbreviated Tb and Tb′, has been investigated by Cu2+-mediated disulfide cross-link formation. Disulfide formation was studied both in soluble model polypeptides and between full-length subunits within intact functional F1F0 ATP synthase complexes. In both cases, disulfides were preferentially formed between TbA83C and Tb′A90C, indicating the existence of a staggered relationship between helices of the two chimeric subunits. Even under stringent conditions rapid formation of disulfides between these positions occurred. Importantly, formation of this cross-link had no detectable effect on ATP-driven proton pumping, indicating that the staggered conformation is compatible with normal enzymatic activity. Under less stringent reaction conditions, it was also possible to detect b subunits cross-linked through identical positions, suggesting that an in-register, nonstaggered parallel conformation may also exist.F1F0 ATP synthases are found in the inner mitochondrial membrane, the thylakoid membrane of chloroplasts, and the cytoplasmic membrane of bacteria (14). These enzymes are responsible for harnessing an electrochemical gradient of protons across the membranes for the synthesis of ATP. In Escherichia coli F1F0 ATP synthase, the membrane-embedded F0 sector is composed of subunits ab2c10 and a soluble F1 portion composed of subunits α3β3γδϵ. The F0 sector houses a proton channel located principally in the a subunit, and the flow of protons through F0 generates torque used to rotate the c10 subunit ring relative to the ab2 subunits. The F1 γ and ϵ subunits are bound to the c10 ring and form the central or rotor stalk. Catalytic sites are located at the interfaces of each αβ pair in F1. The γ subunit extends into the center of the α3β3 hexamer, creating an asymmetry in the conformations of the αβ pairs (5). It is the rotation of the γ subunit and the resulting sequential conformational changes in each αβ pair that provides the driving force for the synthesis of ATP at the catalytic sites. The α3β3 hexamer is held stationary relative to the rotary stalk by the peripheral stalk consisting of the b2δ subunits.The peripheral stalk is essential for binding F1 to F0 and for coupling proton translocation to catalytic activity (68). In the E. coli enzyme, the peripheral stalk is a dimer of identical b subunits. The stalk has been conceptually divided into functional domains called the membrane domain (bM1-I33), the tether domain (bE34-A61), the dimerization domain (bT62-K122), and the F1-binding domain (bQ123-L156) (9). Although there is ample evidence of direct protein-protein interactions between b subunits within the membrane, dimerization, and F1-binding domains, there is remarkably little evidence of tight packing between the b subunits in the tether domain. In fact, electron spin resonance studies suggested that the tether domains of the two b subunits may be separated by more than 20 Å in the F1F0 complex (10, 11). Much of what is known about the structure of the stalk has been inferred from analysis of the properties of polypeptides modeling segments of the b subunit. The structure of a peptide modeling the membrane domain, bM1-E34, has been determined by NMR (12), and a peptide based on the dimerization domain, bT62-K122, has been determined by x-ray diffraction (13). Both polypeptides assumed α-helical conformations, but neither structure directly revealed b subunit dimerization interactions. Recently, Priya et al. (14) reported a low resolution structure of a bM22-L156 dimer, but the extended conformation appears to be slightly too long to accurately reflect the dimensions of the peripheral stalk within the F1F0 complex.Molecular modeling efforts supported by a variety of biochemical and biophysical experiments have yielded competing right-handed coiled coil (15, 16) and left-handed coiled coil (17, 18) models for the peripheral stalk. The parallel two-stranded left-handed coiled coli is a well known structure characterized by knobs-into-holes packing of the side chains of the two helices that are aligned in-register. An in-register conformation implies that any specific amino acid on the b subunit-subunit interface would occupy a position immediately adjacent to its counterpart in the other b subunit. In contrast, del Rizzo et al. (16) proposed a novel parallel right-handed coiled coil with the helices of the two b subunits offset by approximately one and a half turns of an α helix. This staggered model positions the two identical residues contributed by each of the b subunits in a homodimer into differing environments and at considerable distance from one another. Sequence analyses have been offered in support of both models (16, 18). In terms of experimental support, cross-linking studies of polypeptides have provided evidence that dimer packing could be in-register at many sites starting from residue Ala59 and continuing to the carboxyl termini in model bY24–L156 dimers and in bD53–K122 dimers (9, 16). Cross-linking at a few of the carboxyl-proximal positions has been confirmed within intact F1F0 ATP synthase complexes (19, 20). Recent electron spin resonance distance measurements on b24–156 have also been interpreted as support for the in-register arrangement (17, 18). Conversely, work with polypeptides modeling the b subunit has generated evidence favoring a staggered conformation in this section of the dimer (15, 16, 21). In mixtures of dimerization domain polypeptides with cysteines incorporated at different sites, disulfides preferentially formed between positions that were 4–7 residues apart. For example, bD53–L156 dimers were covalently locked into the offset conformation by the formation of disulfide bridges between cysteines introduced at positions bA79 and bR83 as well as bR83 and bA90 (15). These staggered dimers were more stable, melted with higher cooperativity, and bound soluble F1 with higher affinity than bD53–L156 dimers fixed in the in-register arrangement. Moreover, active and coupled F1F0 complexes were assembled with heterodimeric peripheral stalks using b subunits with tether domains varying in length by as many as 14 amino acids (22). These F1F0 complexes had peripheral stalks that were by definition out of register, at least within the tether domain.In contrast to the homodimer of identical b subunits observed in the peripheral stalk of E. coli, photosynthetic organisms express two b-like subunits, b and b′, that are thought to form heterodimeric peripheral stalks in F1F0 ATP synthase. Previously, we generated heterodimeric peripheral stalks within the E. coli F1F0 by constructing chimeric b subunits (23). Segments of the tether and dimerization domains of the E. coli b subunit were replaced with the homologous regions of the Thermosynechococcus elongatus b and b′ subunits. The chimeric subunits formed heterodimeric peripheral stalks that were incorporated into intact, functional F1F0 ATP synthase complexes. The most active chimeric enzymes had T. elongatus primary sequences replacing residues bE39–I86 of the E. coli b subunit. For simplicity, these chimeric subunits will be referred to here as Tb and Tb′.The ability to generate F1F0 ATP synthases with Tb/Tb′ heterodimeric peripheral stalks provided a means to investigate the positions of the two subunits in the peripheral stalk. In the present work, we show that the Tb and Tb′ subunits assumed preferred positions relative to one another within the F1F0 complex. The staggered conformation appears to be a favored and functional conformation for the peripheral stalk. However, within a population of F1F0 complexes, some complexes with peripheral stalks in the in-register conformation are likely to exist.  相似文献   

13.
In Escherichia coli the peripheral stalk of F1F0-ATP synthase consists of a parallel dimer of identical b subunits. However, the length of the two b subunits need not be fixed. This led us to ask whether it is possible for two b subunits of unequal length to dimerize in a functional enzyme complex. A two-plasmid expression system has been developed that directs production of b subunits of unequal lengths in the same cell. Two b subunits differing in length have been expressed with either a histidine or V5 epitope tag to facilitate nickel-affinity resin purification (Ni-resin) and Western blot analysis. The epitope tags did not materially affect enzyme function. The system allowed us to determine whether the different b subunits segregate to form homodimers or, conversely, whether a heterodimer consisting of both the shortened and lengthened b subunits can occur in an intact enzyme complex. Experiments expressing different b subunits lengthened and shortened by up to 7 amino acids were detected in the same enzyme complex. The V5-tagged b subunit shortened by 7 amino acids (b Delta 7-V5) was detected in Ni-resin-purified membrane preparations only when coexpressed with a histidine-tagged b subunit in the same cell. The results demonstrate that the enzyme complex can tolerate a size difference between the two b subunits of up to 14 amino acids. Moreover, the experiments demonstrated the feasibility of constructing enzyme complexes with non-identical b subunits that will be valuable for research requiring specific chemical modification of a single b subunit.  相似文献   

14.
ATP synthases convert an electrochemical proton gradient into rotational movement to produce the ubiquitous energy currency adenosine triphosphate. Tension generated by the rotational torque is compensated by the stator. For this task, a peripheral stalk flexibly fixes the hydrophilic catalytic part F1 to the membrane integral proton conducting part F(O) of the ATP synthase. While in eubacteria a homodimer of b subunits forms the peripheral stalk, plant chloroplasts and cyanobacteria possess a heterodimer of subunits I and II. To better understand the functional and structural consequences of this unique feature of photosynthetic ATP synthases, a procedure was developed to purify subunit I from spinach chloroplasts. The secondary structure of subunit I, which is not homologous to bacterial b subunits, was compared to heterologously expressed subunit II using CD and FTIR spectroscopy. The content of alpha-helix was determined by CD spectroscopy to 67% for subunit I and 41% for subunit II. In addition, bioinformatics was applied to predict the secondary structure of the two subunits and the location of the putative coiled-coil dimerization regions. Three helical domains were predicted for subunit I and only two uninterrupted domains for the shorter subunit II. The predicted length of coiled-coil regions varied between different species and between subunits I and II.  相似文献   

15.
16.
Vacuolar-type rotary H(+)-ATPase/synthase (V(o)V(1)) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V(1) (A(3)B(3)D(1)F(1)) and V(o) (C(1)E(2)G(2)I(1)L(12)) subcomplexes in vitro. A(3)B(3)D and A(3)B(3) also reconstituted with V(o), resulting in a holoenzyme-like complexes. However, A(3)B(3)D-V(o) and A(3)B(3)-V(o) did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V(1) or A(3)B(3)D and a donor dye attached to subunit C in V(o). The estimated dissociation constants K(d) for V(o)V(1) and A(3)B(3)D-V(o) were ~0.3 and ~1 nm at 25 °C, respectively. These results suggest that the A(3)B(3) domain tightly associated with the two EG peripheral stalks of V(o), even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A(3)B(3) with V(o) is much lower than that of the EG peripheral stalks.  相似文献   

17.
ATP synthases - rotary nano machines - consist of two major parts, F(O) and F(1), connected by two stalks: the central and the peripheral stalk. In spinach chloroplasts, the central stalk (subunits gamma, epsilon) forms with the cylinder of subunits III the rotor and transmits proton motive force from F(O) to F(1), inducing conformational changes of the catalytic centers in F(1). The epsilon subunit is an important regulator affecting adjacent subunits as well as the activity of the whole protein complex. Using a combination of chemical cross-linking and mass spectrometry, we monitored interactions of subunit epsilon in spinach chloroplast ATP synthase with III and gamma. Onto identification of interacting residues in subunits epsilon and III, one cross-link defined the distance between epsilon-Cys6 and III-Lys48 to be 9.4 A at minimum. epsilon-Cys6 was competitively cross-linked with subunit gamma. Altered cross-linking yields revealed the impact of nucleotides and Mg(2+) on cross-linking of subunit epsilon. The presence of nucleotides apparently induced a displacement of the N-terminus of subunit epsilon, which separated epsilon-Cys6 from both, III-Lys48 and subunit gamma, and thus decreasing the yield of the cross-linked subunits epsilon and gamma as well as epsilon and III. However, increasing concentrations of the cofactor Mg(2+) favoured cross-linking of epsilon-Cys6 with subunit gamma instead of III-Lys48 indicating an approximation of subunits gamma and epsilon and a separation from III-Lys48.  相似文献   

18.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

19.
Subunit h is a component of the peripheral stalk region of ATP synthase from Saccharomyces cerevisiae. It is weakly homologous to subunit F6 in the bovine enzyme, and F6 can replace the function of subunit h in a yeast strain from which the gene for subunit h has been deleted. The removal of subunit h (or F6) uncouples ATP synthesis from the proton motive force. A biotinylation signal has been introduced following the C terminus of subunit h. It becomes biotinylated in vivo, and allows avidin to be bound quantitatively to the purified enzyme complex in vitro. By electron microscopy of the ATP synthase-avidin complex in negative stain and by subsequent image analysis, the C terminus of subunit h has been located in a region of the peripheral stalk that is close to the Fo membrane domain of ATP synthase. Models of the peripheral stalk are proposed that are consistent with this location and with reconstitution experiments conducted with isolated peripheral stalk subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号