首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examined behavioural responses in yolk‐sac rainbow trout Oncorhynchus mykiss larvae originating from strains selected for high (HR) or low (LR) plasma cortisol response to a standardized stressor. The results showed that yolk‐sac larvae originating from the HR strain were more sensitive to environmental stressors, in that they showed a shorter reaction time to low oxygen levels. Previous studies on adult and juvenile individuals from these strains demonstrated a number of correlated physiological and behavioural differences. In yolk‐sac larvae, growth and development depended mainly on internal factors, which suggest that at least some aspects of stress‐coping styles are inherent to the individual, before factors such as social experience or variable access to food resources could modify behavioural strategy.  相似文献   

2.
Consistent and heritable individual differences in reaction to challenges, often referred to as stress coping styles, have been extensively documented in vertebrates. In fish, selection for divergent post-stress plasma cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded a low (LR) and a high responsive (HR) strain. A suite of behavioural traits is associated with this physiological difference, with LR (proactive) fish feeding more rapidly after transfer to a new environment and being socially dominant over HR (reactive) fish. Following transport from the UK to Norway, a switch in behavioural profile occurred in trout from the 3rd generation; HR fish regained feeding sooner than LR fish in a novel environment and became dominant in size-matched HR–LR pairs. One year after transport, HR fish still fed sooner, but no difference in social dominance was found. Among offspring of transported fish, no differences in feeding were observed, but as in pre-transported 3rd generation fish, HR fish lost fights for social dominance against size-matched LR opponents. Transported fish and their offspring retained their distinctive physiological profile throughout the study; HR fish showed consistently higher post-stress cortisol levels at all sampling points. Altered risk-taking and social dominance immediately after transport may be explained by the fact that HR fish lost more body mass during transport than did LR fish. These data demonstrate that some behavioural components of stress coping styles can be modified by experience, whereas behavioural plasticity is limited by genetic effects determining social position early in life story.  相似文献   

3.
The aim of this study was to establish whether two lines of rainbow trout divergent for their plasma cortisol response to a standardized stressor would show consistent differences in their behavioural response to a range of challenging situations. Our results show that the high- and low-responding (HR and LR) lines of rainbow trout did not differ in the aggression shown towards an intruder or in their response to the introduction of a novel object to their home environment. However, there was a difference in behaviour between the two selection lines when they were exposed to two unfamiliar environments. These results suggest that the behaviour of the HR and LR fish differs when they are challenged in unfamiliar environments, while their behaviour does not differ when they are challenged in their home environment. These observations are in agreement with studies on mammals that show that individuals with reactive coping styles perform similarly to proactive animals when they are challenged in a familiar environment, while they show different behaviour when they are challenged in unfamiliar environments. Thus, these results provide further evidence that the HR and LR selection lines of rainbow trout exemplify the two different coping styles described in mammals.  相似文献   

4.
M. I. McCormick 《Oecologia》1999,118(4):412-422
Maternal hormones can play an important role in the development of fish larvae. Levels of the stress hormone, cortisol, in females are elevated by social interactions and transferred directly to the yolk of eggs, where they may influence developmental rates. In some vertebrates, prenatal exposure to high levels of testosterone determine early growth rates, social status and reproductive success. The present study examined whether post-fertilization exposure of eggs of the tropical damselfish, Pomacentrus amboinensis (Pomacentridae), to natural levels of cortisol or testosterone directly affects larval morphology at hatching. Maternal and egg levels of cortisol and testosterone varied widely among clutches of eggs from local populations around Lizard Island on the Great Barrier Reef. The morphology of larvae produced by these local fish populations also varied widely and differed significantly among sites (e.g., standard length: 2.6–3.4 mm; yolk sac area: 0.01–0.13 × 10−2 mm2). Laboratory experiments showed that elevated cortisol levels in the egg reduced larval length at hatching, while slight elevations in testosterone increased yolk sac size. The influence of testosterone, and to a smaller extent cortisol, on larval morphology differed among egg clutches. These differences were partly explained by differences in initial egg hormone levels. Morphological changes induced by experimental hormonal regimes encompassed the entire range of variability in body attributes found in field populations. It is unclear whether cortisol influences growth alone or development rate or both. Testosterone appears to influence yolk utilization rates, and has no significant effect on growth, in contrast to its role in later developmental stages. Maternally derived cortisol and testosterone are important in regulating growth, development, and nutritive reserves of the embryo and larvae of this fish species. Factors that influence the maternal levels of cortisol and testosterone may have a major impact on larval mortality schedules and, therefore, on which breeding individuals contribute to the next generation. Received: 19 August 1998 / Accepted: 16 November 1998  相似文献   

5.
This work examined the effects of maternal conditions on early life history traits of black porgy Acanthopagrus schlegeli . Age-II females produced significantly larger eggs as compared to the same size of Age-III females. Also, within each of the age groups, there was a positive relationship between egg size and female size. The larger eggs generally had larger volumes of oil globules, required longer incubation periods (hatching age), and produced larger larvae that endured longer to starvation. Hatching age was covaried negatively with yolk volume at hatching, indicating that embryonic development consumed primarily yolk as its energy resource. The condition factor, gonadosomatic index, hepatosomatic index, and lipid content of the females were not related to the early life history traits of their offspring.  相似文献   

6.
The aim for this study was to examine whether the F4 generation of two strains of rainbow trout divergent in their plasma cortisol response to confinement stress (HR: high responder or LR: low responder) would also differ in stress-induced effects on forebrain concentrations of mRNA for corticotropin-releasing factor (CRF), arginine vasotocin (AVT), CRF receptor type 1 (CRF-R1), CRF receptor type 2 (CRF-R2) and AVT receptor (AVT-R). In addition, plasma cortisol concentrations, brainstem levels of monoamines and monoamine metabolites, and behaviour during confinement were monitored. The results confirm that HR and LR trout differ in their cortisol response to confinement and show that fish of these strains also differ in their behavioural response to confinement. The HR trout displayed significantly higher locomotor activity while in confinement than LR trout. Moreover, following 180 min of confinement HR fish showed significantly higher forebrain concentrations of CRF mRNA than LR fish. Also, when subjected to 30 min of confinement HR fish showed significantly lower CRF-R2 mRNA concentrations than LR fish, whereas there were no differences in CRF-R1, AVT or AVT-R mRNA expression between LR and HR fish either at 30 or 180 min of confinement. Differences in the expression of CRF and CRF-R2 mRNA may be related to the divergence in stress coping displayed by these rainbow trout strains.  相似文献   

7.
Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex.  相似文献   

8.
Parental condition affects early life-history of a coral reef fish   总被引:1,自引:0,他引:1  
Parents can exert a range of non-genetic effects on the growth and survival of their offspring. In particular, parents may modify the size or condition of their offspring depending on the amount of energy they have available for reproduction. In this study, the body condition of breeding pairs of the coral reef fish Acanthochromis polyacanthus was experimentally manipulated to test the effects of parental condition on reproductive output and offspring life history traits. Parents in good condition commenced breeding earlier, had higher reproductive output, and their eggs exhibited increased survival during embryogenesis, compared to parents in poorer condition. Increased reproductive output was attained through more reproductive bouts over the breeding season that contained both a greater number and an increased size of eggs. The offspring from parents in good condition were larger at hatching, with larger yolk reserves and increased survival on endogenous reserves. Larger size is expected to provide benefits to offspring through reduced susceptibility to size-selective mortality. The range of offspring characteristics modified by parental condition could result in a greater proportion of offspring from good condition parents recruiting to the population.  相似文献   

9.
Size‐dependent reproductive success of wild zebrafish Danio rerio was studied under controlled conditions in the laboratory to further understand the influence of spawner body size on reproductive output and egg and larval traits. Three different spawner size categories attained by size‐selective harvesting of the F1‐offspring of wild D. rerio were established and their reproductive performance compared during a 5 day period. As to be expected, large females spawned more frequently and had significantly greater clutch sizes than small females. Contrary to expectations, small females produced larger eggs when measured as egg diameter with similar amounts of yolk compared to eggs spawned by large spawners. Eggs from small fish, however, suffered from higher egg mortality than the eggs of large individuals. Embryos from small‐sized spawners also hatched later than offspring from eggs laid by large females. Larval standard length (LS)‐at‐hatch did not differ between the size categories, but the offspring of the large fish had significantly larger area‐at‐hatch and greater yolk‐sac volume indicating better condition. Offspring growth rates were generally similar between offspring from all size categories, but they were significantly higher for offspring spawned by small females in terms of LS between days 60 and 90 post‐fertilization. Despite temporarily higher growth rates among the small fish offspring, the smaller energy reserves at hatching translated into lower condition later in ontogeny. It appeared that the influence of spawner body size on egg and larval traits was relatively pronounced early in development and seemed to remain in terms of condition, but not in growth, after the onset of exogenous feeding. Further studies are needed to explore the mechanisms behind the differences in offspring quality between large‐ and small‐sized spawners by disentangling size‐dependent maternal and paternal effects on reproductive variables in D. rerio.  相似文献   

10.
In rainbow trout the magnitude of the cortisol response to stressshows both consistency over time and a moderate to high degreeof heritability, and high responding (HR) and low responding(LR) lines of rainbow trout have been generated by individualselection for consistently high or low post-stress cortisolvalues. Using 2nd and 3rd generation fish, we tested the hypothesisthat differential stress responsiveness is associated with behavioralalterations in the HR-LR trout model. LR fish showed a tendencyto become socially dominant, a rapid recovery of food intakeafter transfer to a novel environment, and a reduced locomotorresponse in a territorial intrusion test. Furthermore, stressinduced elevation of brain stem and optic tectum concentrationsof the monoamine neurotransmitters serotonin, dopamine, andnorepinephrine and their metabolites suggests that both synthesisand metabolism of these transmitters were elevated after stressto a larger degree in HR than in LR trout. A divergent patternwas seen in the hypothalamus, where LR fish displayed elevatedlevels of 5-hydroxyindoleacetic acid (a serotonin metabolite)and 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite).Thus, selection for a single trait, cortisol responsiveness,in rainbow trout is associated with concurrent changes in bothbehavior and central signaling systems. The apparent parallelto genetically determined stress coping styles in mammals, andthe existence of similar trait associations in unselected populationsof rainbow trout, suggests an evolutionarily conserved correlationbetween multiple traits. Continuing studies on the HR and LRtrout lines are aimed at providing the physiological and geneticbasis for new marker-assisted selection strategies in the rapidlydeveloping finfish aquaculture industry, as well as increasedknowledge of the function and evolution of central neuroendocrinesignaling systems.  相似文献   

11.
There is a surging interest in the evolution, ecology and physiology of personality differences. However, most of the studies in this research area have been performed in adult animals. Trait variations expressed early in development and how they are related to the ontogeny of an animal’s personality are far less studied. Genetic differences as well as environmental factors causing functional variability of the central serotonergic system have been related to personality differences in vertebrates, including humans. Such gene-environment interplay suggests that the central serotonergic system plays an important role in the ontogeny of personality traits. In salmonid fishes, the timing of emergence from spawning nests is related to energy reserves, aggression, and social dominance. However, it is currently unknown how the size of the yolk reserve is reflected on aggression and dominance, or if these traits are linked to differences in serotonergic transmission in newly emerged larvae. In this study we investigated the relationship between yolk reserves, social dominance, and serotonergic transmission in newly emerged rainbow trout (Oncorhynchus mykiss) larvae. This was conducted by allowing larvae with the same emergence time, but with different yolk sizes, to interact in pairs for 24 h. The results show that individuals with larger yolks performed more aggressive acts, resulting in a suppression of aggression in individuals with smaller yolks. A higher brain serotonergic activity confirmed subordination in larvae with small yolks. The relationship between social dominance and yolk size was present in siblings, demonstrating a link between interfamily variation in energy reserves and aggression, and suggests that larger yolk reserves fuel a more aggressive personality during the initial territorial establishment in salmonid fishes. Furthermore, socially naïve larvae with big yolks had lower serotonin levels, suggesting that other factors than the social environment causes variation in serotonergic transmission, underlying individual variation in aggressive behavior.  相似文献   

12.
Females of the Japanese foliage spider, Chiracanthium japonicum, are eaten by their offspring at the end of the maternal care period. To examine the patterns of allocation of maternal investment to their offspring associated with female resource capacity, the amounts of female body reserves accumulated before oviposition, reproductive components at the egg-production phase and those at the matriphagy phase were measured using an artificial breeding nest. Regardless of size, female bodies were completely consumed by the offspring, and larger females, i.e. those having larger reserves, produced a larger number of offspring, but not larger offspring. Furthermore, the proportion of reserves allocated to egg production was not affected by the total amount of the reserves, which indicated that the females systematically divided the resources for individual offspring between egg yolk and food for the growth and survival of the offspring. These results suggest that C. japonicum females adjust egg production to their own resource capacity so that they can achieve an investment per individual offspring which is not dependent on resource capacity. Electronic Publication  相似文献   

13.
The present study investigated the relationship between reproductive success and stress-coping styles in gilthead seabream Sparus aurata in captivity. To characterise stress-coping styles, a total of 22 breeders were submitted to three different individual-based tests, one group-based test and post-handling glucocorticoid quantification. To assess spawning participation, a microsatellite analysis was performed on a total of 2698 larvae, which allowed each offspring to be assigned unambiguously to a single parental couple. Overall, S. aurata showed defined proactive and reactive behavioural traits. Proactive breeders exhibited higher levels of activity and risk taking and lower glucocorticoid blood levels than reactive breeders. The stress-coping style traits were consistent over time and context (different tests). Breeders that contributed to a higher number of progeny exhibited proactive behaviours, while those showing low progeny contribution exhibited reactive behaviour. Therefore, breeders with a high proportion of progeny (> 20%) had significantly higher activity and risk taking and lower cortisol than breeders with low progeny contribution (< 20%). In addition, males were more proactive than females and males exhibited significantly higher activity, risk taking and lower cortisol than females. This study is the first to establish in S. aurata breeders: (a) a relationship between stress-coping styles and spawning success; (b) a relationship between stress-coping styles and gender; and (c) the existence of proactive and reactive traits at the adult stage.  相似文献   

14.
It is widely expected that physiological and behavioral stress responses will be integrated within divergent stress‐coping styles (SCS) and that these may represent opposite ends of a continuously varying reactive–proactive axis. If such a model is valid, then stress response traits should be repeatable and physiological and behavioral responses should also change in an integrated manner along a major axis of among‐individual variation. While there is some evidence of association between endocrine and behavioral stress response traits, few studies incorporate repeated observations of both. To test this model, we use a multivariate, repeated measures approach in a captive‐bred population of Xiphophorus birchmanni. We quantify among‐individual variation in behavioral stress response to an open field trial (OFT) with simulated predator attack (SPA) and measure waterborne steroid hormone levels (cortisol, 11‐ketotestosterone) before and after exposure. Under the mild stress stimulus (OFT), (multivariate) behavioral variation among individuals was consistent with a strong axis of personality (shy–bold) or coping style (reactive–proactive) variation. However, behavioral responses to a moderate stressor (SPA) were less repeatable, and robust statistical support for repeatable endocrine state over the full sampling period was limited to 11‐ketotestosterone. Although post hoc analysis suggested cortisol expression was repeatable over short time periods, qualitative relationships between behavior and glucocorticoid levels were counter to our a priori expectations. Thus, while our results clearly show among‐individual differences in behavioral and endocrine traits associated with stress response, the correlation structure between these is not consistent with a simple proactive–reactive axis of integrated stress‐coping style. Additionally, the low repeatability of cortisol suggests caution is warranted if single observations (or indeed repeat measures over short sampling periods) of glucocorticoid traits are used in ecological or evolutionary studies focussed at the individual level.  相似文献   

15.
Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.  相似文献   

16.
In rainbow trout (Oncorhynchus mykiss), selection for divergent post-stress plasma cortisol levels has yielded low (LR)- and high (HR) responsive lines, differing in behavioural and physiological aspects of stress coping. For instance, LR fish display prolonged retention of a fear response and of previously learnt routines, compared to HR fish. This study aims at investigating putative central nervous system mechanisms controlling behaviour and memory retention. The stress hormone cortisol is known to affect several aspects of cognition, including memory retention. Cortisol acts through glucocorticoid receptors 1 and 2 (GR1 and 2) and a mineralcorticoid receptor (MR), all of which are abundantly expressed in the salmonid brain. We hypothesized that different expressions of MR and GRs in LR and HR trout brains could be involved in the observed differences in cognition. We quantified the mRNA expression of GR1, GR2 and MR in different brain regions of stressed and non-stressed LR and HR trout. The expression of MR was higher in LR than in HR fish in all brain parts investigated. This could be associated with reduced anxiety and enhanced memory retention in LR fish. MR and GR1 expression was also subject to negative regulation by stress in a site-specific manner.  相似文献   

17.
Maternal condition influences phenotypic selection on offspring   总被引:4,自引:0,他引:4  
1. Environmentally induced maternal effects are known to affect offspring phenotype, and as a result, the dynamics and evolution of populations across a wide range of taxa. 2. In a field experiment, we manipulated maternal condition by altering food availability, a key factor influencing maternal energy allocation to offspring. We then examined how maternal condition at the time of gametogenesis affects the relationships among early life-history traits and survivorship during early development of the coral reef fish Pomacentrus amboinensis. 3. Maternal condition did not affect the number of embryos that hatched or the number of hatchlings surviving to a set time. 4. We found no significant difference in egg size in relation to the maternal physiological state. However, eggs spawned by supplemented mothers were provisioned with greater energy reserves (yolk-sac and oil globule size) than nonsupplemented counterparts, suggesting that provision of energy reserves rather than egg size more closely reflected the maternal environment. 5. Among offspring originating from supplemented mothers, those with larger yolk-sacs were more likely to successfully hatch and survive for longer periods after hatching. However, among offspring from nonsupplemented mothers, yolk-sac size was either inconsequential to survival or offspring with smaller yolk-sac sizes were favoured. Mothers appear to influence the physiological capacity of their progeny and in turn the efficiency of individual offspring to utilize endogenous reserves. 6. In summary, our results show that the maternal environment influences the relationship between offspring characteristics and survival and suggest that energy-driven selective mechanisms may operate to determine progeny viability.  相似文献   

18.
Nurul Izza Ab Ghani  Juha Merilä 《Oikos》2014,123(12):1489-1498
Compensatory growth (CG) is a form of phenotypic plasticity allowing individuals’ growth trajectories to rebound after a period of resource limitation, but little is known about the reproductive and cross‐generational costs of CG. We studied the potential costs of CG by exposing female nine‐spined sticklebacks Pungitius pungitius to 1) high (favourable), 2) low (stressful), and 3) recovery (initially stressful, subsequently favourable) feeding treatments, and quantified the effects of these treatments on female reproductive traits (clutch, egg and yolk size), and on the size of their offspring. The low feeding treatment reduced female size relative to the high and recovery feeding treatments, which produced equally large females. Hence, females from the recovery treatment demonstrated CG and full growth compensation. Feeding treatments had significant effects on clutch, yolk, egg and larval size, also when the effect of female size was controlled for. However, these effects came about mostly because females from the low feeding treatment produced small clutches with large eggs (containing little yolk) and larvae, whereas females from the recovery feeding treatment produced as large clutches, eggs (with similar amounts of yolk) and larvae as females from the high feeding treatment. Yet, structural equation modelling revealed that while a direct effect of female size on offspring size was positive in the low and high feeding treatments, it was negative in the recovery feeding treatment, independently of egg and clutch size. This indicates a cross‐generational tradeoff between female and offspring sizes in the recovery feeding treatment. Also the tradeoff between clutch and larval size was more pronounced in recovery than in low or high feeding treatments. Hence, apart from demonstrating that environmental influences experienced by females during their development have the potential to influence their size, fecundity and reproductive traits, the results also provide evidence for complex cross‐generational costs of recovery growth.  相似文献   

19.
20.
Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid (Simochromis pleurospilus). The expression levels of one of them, the growth hormone receptor (GHR), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号