首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extracellular zona pellucida surrounding mammalian eggs is formed by interactions of the ZP1, ZP2, and ZP3 glycoproteins. Female mice lacking ZP2 or ZP3 do not form a stable zona matrix and are sterile. The three zona proteins are synthesized in growing oocytes and secreted prior to incorporation into the zona pellucida. A well-conserved furin site upstream of a transmembrane domain near the carboxyl terminus of each has been implicated in the release of the zona ectodomains from oocytes. However, mutation of the furin site (RNRR --> ANAA) does not affect the intracellular trafficking or secretion of an enhanced green fluorescent protein (EGFP)-ZP3 fusion protein in heterologous somatic cells. After transient expression in growing oocytes, normal EGFP-ZP3 and mutant EGFP-ZP3 associate with the inner aspect of the zona pellucida, which is distinct from the plasma membrane. These in vitro results are confirmed in transgenic mice expressing EGFP-ZP3 with or without the mutant furin site. In each case, EGFP-ZP3 is incorporated throughout the width of the zona pellucida and the transgenic mice are fertile. These results indicate that the zona matrix accrues from the inside out and, unexpectedly, suggest that cleavage at the furin site is not required for formation of the extracellular zona pellucida surrounding mouse eggs.  相似文献   

2.
The zona pellucida is an extracellular matrix consisting of three glycoproteins that surrounds mammalian eggs and mediates fertilization. The primary structures of mouse ZP1, ZP2, and ZP3 have been deduced from cDNA. Each has a predicted signal peptide and a transmembrane domain from which an ectodomain must be released. All three zona proteins undergo extensive co- and post-translational modifications important for secretion and assembly of the zona matrix. In this report, native zonae pellucidae were isolated and structural features of individual zona proteins within the mixture were determined by high resolution electrospray mass spectrometry. Complete coverage of the primary structure of native ZP3, 96% of ZP2, and 56% of ZP1, the least abundant zona protein, was obtained. Partial disulfide bond assignments were made for each zona protein, and the size of the processed, native protein was determined. The N termini of ZP1 and ZP3, but not ZP2, were blocked by cyclization of glutamine to pyroglutamate. The C termini of ZP1, ZP2, and ZP3 lie upstream of a dibasic motif, which is part of, but distinct from, a proprotein convertase cleavage site. The zona proteins are highly glycosylated and 4/4 potential N-linkage sites on ZP1, 6/6 on ZP2, and 5/6 on ZP3 are occupied. Potential O-linked carbohydrate sites are more ubiquitous, but less utilized.  相似文献   

3.
Proteolytic processing of human zona pellucida proteins.   总被引:3,自引:0,他引:3  
Formation of the egg's extracellular matrix, the zona pellucida, is critical for fertilization and development of growing embryos. Zona pellucida glycoproteins, ZP1, ZP2, and ZP3, are secreted to form an insoluble extracellular matrix surrounding mammalian eggs. All cloned mammalian zona pellucida sequences contain a furin consensus cleavage site, RX(K)/(R)R, upstream of a putative transmembrane domain, which suggests processing by an endoprotease of the furin-proprotein-convertase family. Recombinant expression of human (h) ZP1, ZP2, and ZP3 produces glycoproteins that are secreted and have migration patterns in SDS-PAGE identical to those of native human zona pellucida proteins. Because a C-terminal epitope tag that is present in the cell-associated zona proteins is, however, absent from the secreted zona proteins, secreted recombinant zona pellucida proteins lack their C-terminal regions. Three different strategies were used to explore processing events in the C-terminal region: site-directed mutagenesis of the furin cleavage site, treatment with a competitive inhibitor of all furin family members, and interference with Golgi modifications by Brefeldin A. All treatments altered the SDS-PAGE migration of recombinant hZP3, concordant with cleavage by a furin family member and Golgi glycosylation of secreted hZP3. Furthermore, cleavage of cell-associated hZP3 by exogenous furin converts the migration of cell-associated hZP3 to that of secreted hZP3. To determine whether a similar cleavage pattern exists in zona pellucida proteins that are assembled in the zona matrix, "hZP3 rescue" mouse zonae pellucidae were employed. Immunoblotting experiments revealed that hZP3, assembled and functional in the "hZP3 rescue" mouse zona pellucida, lacks the furin cleavage site, supporting the hypothesis that formation of the zona pellucida matrix involves regulated proteolysis by a member of the furin convertase family.  相似文献   

4.
The extracellular zona pellucida surrounds mammalian eggs and mediates taxon-specific sperm-egg recognition at fertilization. In mice, the zona pellucida is composed of three glycoproteins, but the presence of ZP2 and ZP3 is sufficient to form a biologically functional structure. Each zona pellucida glycoprotein is synthesized in growing oocytes and traffics through the endomembrane system to the cell surface, where it is released from a transmembrane domain and assembled into the insoluble zona pellucida matrix. ZP2 and ZP3 colocalize in the endoplasmic reticulum and in 1- to 5-microm post-Golgi structures comprising multivesicular aggregates (MVA), but a coimmunoprecipitation assay does not detect physical interactions. In addition, ZP2 traffics normally in growing oocytes in the absence of ZP3 or if ZP3 has been mutated to prevent incorporation into the zona pellucida matrix, complementing earlier studies indicating the independence of ZP3 secretion in Zp2 null mice. N glycosylation has been implicated in correct protein folding and intracellular trafficking of secreted proteins. Although ZP3 contain five N-glycans, enhanced green fluorescent protein-tagged ZP3 lacking N glycosylation sites is present in MVA and is incorporated into the zona pellucida matrix of transgenic mice. Thus, ZP2 secretion is seemingly unaffected by ZP3 lacking N-glycans. Taken together, these observations indicate that ZP2 and ZP3 traffic independently through the oocyte prior to assembly into the zona pellucida.  相似文献   

5.
6.
The zona pellucida (ZP) is a highly organized extracellular coat that surrounds all mammalian eggs. The mouse egg ZP is composed of three glycoproteins, called mZP1-3, that are synthesized, secreted, and assembled into a ZP exclusively by growing oocytes. Here, we microinjected epitope-tagged (Myc and Flag) cDNAs for mZP2 and mZP3 into the germinal vesicle (nucleus) of growing oocytes isolated from juvenile mice. Specific antibodies and laser scanning confocal microscopy were used to follow nascent, recombinant ZP glycoproteins in both permeabilized and nonpermeabilized oocytes. When such cDNAs were injected, epitope-tagged mZP2 (Myc-mZP2) and mZP3 (Flag-mZP3) were synthesized, packaged into large intracellular vesicles, and secreted by the vast majority of oocytes. Secreted glycoproteins were incorporated into only the innermost layer of the thickening ZP, and the amount of nascent glycoprotein in this region increased with increasing time of oocyte culture. Consistent with prior observations, the putative transmembrane domain at the C terminus of mZP2 and mZP3 was missing from nascent glycoprotein incorporated into the ZP. When the consensus furin cleavage site near the C terminus of mZP3 was mutated, such that it should not be cleaved by furin, secretion and assembly of mZP3 was reduced. On the other hand, mZP3 incorporated into the ZP lacked the transmembrane domain downstream of the mutated furin cleavage site, suggesting that some other protease(s) excised the domain. These results strongly suggest that nascent mZP2 and mZP3 are incorporated into only the innermost layer of the ZP and that excision of the C-terminal region of the glycoproteins is required for assembly into the oocyte ZP.  相似文献   

7.
Boja ES  Hoodbhoy T  Garfield M  Fales HM 《Biochemistry》2005,44(50):16445-16460
The mammalian zona pellucida is an egg extracellular matrix to which sperm bind. Mouse zonae are composed of three glycoproteins (ZP1, ZP2, and ZP3), while rat zonae contain four (ZP1, ZP2, ZP3, and ZP4/ZPB). Mouse sperm bind to zonae comprised solely of mouse ZP2 and ZP3. In this report, we show that rat sperm also bind to these zonae, indicating that ZP2 and ZP3 contain a "minimum structure(s)" to which rodent sperm can bind, and ZP1 and ZP4/ZPB are dispensable in these two rodents. These data are consistent with our mass spectrometric analysis of the native rat zona pellucida proteome (defined as the fraction of the total rat proteome to which the zonae glycoproteins contribute) demonstrating that the rat zonae glycoproteins share a high degree of conservation of structural features with respect to their mouse counterparts. The primary sequences of the rat zonae proteins have been deduced from cDNA. Each zona protein undergoes extensive co- and post-translational modification prior to its secretion and incorporation into an extracellular zona matrix. Each has a predicted N-terminal signal peptide that is cleaved off once protein translation begins and an anchoring C-terminal transmembrane domain from which the mature protein is released. Mass spectrometric analysis with a limited amount of native material allowed determination of the mature N-termini of rat ZP1 and ZP3, both of which are characterized by cyclization of glutamine to pyroglutamate; the N-terminus of ZP2 was identified by Edman degradation. The mature C-termini of ZP1 and ZP3 end two amino acids upstream of a conserved dibasic residue that is part of, but distinct from, the consensus furin cleavage sequence, while the C-terminus of ZP2 was not determined. Each zona protein contains a "zona domain" with eight conserved cysteine residues that is thought to play a role in the polymerization of the zona proteins into matrix filaments. Partial disulfide bond assignment indicates that the intramolecular disulfide patterns in rat ZP1, ZP2, and ZP3 are identical to those of their corresponding mouse counterparts. Last, nearly all potential N-glycosylation sites are occupied in the rat zonae glycoproteins (three of three for ZP1, six or seven of seven for ZP2, and four or five of six for ZP3). In comparison, potential O-glycosylation sites are numerous (59-83 Ser/Thr residues), but only two regions were observed to carry O-glycans in rat ZP3.  相似文献   

8.
Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.  相似文献   

9.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

10.
The zona pellucida surrounding ovulated mouse eggs contains three glycoproteins, two of which (ZP2 and ZP3) are reported sperm receptors. After fertilization, the zona pellucida is modified ad minimus by cleavage of ZP2, and sperm no longer bind. Crosstaxa sperm binding is limited among mammals, and human sperm do not bind to mouse eggs. Using transgenesis to replace mouse ZP2 and/or ZP3 with human homologs, mouse lines with human-mouse chimeric zonae pellucidae have been established. Unexpectedly, mouse, but not human, sperm bind to huZP2 and huZP2/huZP3 rescue eggs, eggs fertilized in vitro with mouse sperm progress to two-cell embryos, and rescue mice are fertile. Also unanticipated, human ZP2 remains uncleaved after fertilization, and mouse sperm continue to bind early rescue embryos. These observations are consistent with a model in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

11.
Type XIII collagen is a transmembrane protein that also exists as a soluble extracellular variant because of ectodomain shedding by proprotein convertases. Because ectodomain shedding in a growing number of transmembrane proteins has recently been shown to be dependent on their localization in cholesterol-enriched detergent-resistant membrane microdomains, this work aimed at analyzing this aspect of type XIII collagen ectodomain processing. In HT-1080 cells type XIII collagen and its cleaving proprotein convertase furin localized partially in detergent-resistant cholesterol-containing membrane microdomains. Disruption of these domains by lowering either the level or availability of the cellular cholesterol reduced ectodomain shedding, implying that, in such membrane domains correct cholesterol level is important for the regulation of type XIII collagen ectodomain processing. In addition, we show here that ectodomain of type XIII collagen is also shed intracellularly. HT-1080 cells released vesicles from the Golgi apparatus, which contained only the cleaved variant. Intracellular processing and the subsequent entry of the cleaved ectodomain into the vesicles was totally blocked by inhibition of the proprotein convertase function by cell-permeable chloromethylketone, but not with cell-impermeable alpha1-antitrypsin Portland. This supports the hypothesis of type XIII collagen ectodomain also being cleaved intracellularly in the Golgi and suggests that the intracellular cleavage may act as a gating event in the vesicle-mediated ectodomain secretion.  相似文献   

12.
The zona pellucida is an extracellular matrix that mediates taxon-specific fertilization in which human sperm will not bind to mouse eggs. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, ZP3). The primary structure of each has been deduced from the cDNA nucleic acid sequence, and each has been analyzed by mass spectrometry. However, determination of the secondary structure and processing of the human zona proteins have been hampered by the paucity of biological material. To investigate if taxon-specific sperm-egg recognition was ascribable to structural differences in a zona protein required for matrix formation, recombinant human ZP3 was expressed in CHO-Lec3.2.8.1 cells and compared to mouse ZP3. With nearly complete coverage, LC-QTOF mass spectrometry was used to determine the cleavage of an N-terminal signal peptide (amino acids 1-22) and the release of secreted ZP3 from a C-terminal transmembrane domain (amino acids 379-424). The resultant N-terminal glutamine was cyclized to pyroglutamate (pyrGln(23)), and several C-terminal peptides were detected, including one ending at Asn(350). The disulfide bond linkages of eight cysteine residues in the conserved zona domain were ascertained (Cys(46)/Cys(140), Cys(78)/Cys(99), Cys(217)/Cys(282), Cys(239)/Cys(300)), but the precise linkage of two additional disulfide bonds was indeterminate due to clustering of the remaining four cysteine residues (Cys(319), Cys(321), Cys(322), Cys(327)). Three of the four potential N-linked oligosaccharide binding sites (Asn(125), Asn(147), Asn(272)) were occupied, and clusters of O-glycans were observed within two regions, amino acids 156-173 and 260-281. Taken together, these data indicate that human and mouse ZP3 proteins are quite similar, and alternative explanations of taxon-specific sperm binding warrant exploration.  相似文献   

13.
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1-3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm-egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy.  相似文献   

14.
The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor β (TGF-β) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-β-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 Å crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3.  相似文献   

15.
Han L  Monné M  Okumura H  Schwend T  Cherry AL  Flot D  Matsuda T  Jovine L 《Cell》2010,143(3):404-415
ZP3, a major component of the zona pellucida (ZP) matrix coating mammalian eggs, is essential for fertilization by acting as sperm receptor. By retaining a propeptide that contains a polymerization-blocking external hydrophobic patch (EHP), we determined the crystal structure of an avian homolog of ZP3 at 2.0 ? resolution. The structure unveils the fold of a complete ZP domain module in a homodimeric arrangement required for secretion and reveals how EHP prevents premature incorporation of ZP3 into the ZP. This suggests mechanisms underlying polymerization and how local structural differences, reflected by alternative disulfide patterns, control the specificity of ZP subunit interaction. Close relative positioning of a conserved O-glycan important for sperm binding and the hypervariable, positively selected C-terminal region of ZP3 suggests a concerted role in the regulation of species-restricted gamete recognition. Alternative conformations of the area around the O-glycan indicate how sperm binding could trigger downstream events via intramolecular signaling.  相似文献   

16.
The mammalian zona pellucida (ZP) is an extracellular glycoprotein coat that plays vital roles throughout fertilisation and preimplantation development. Like that of eutherian mammals the brushtail possum ZP is composed of three glycosylated proteins of 137 kDa, 92 kDa and 62 kDa. The 62 kDa protein is a ZP3 orthologue based on its nucleotide and deduced amino acid sequence. The brushtail possum ZP3 cDNA isolated in this study is 1305 nucleotides with an open reading frame encoding a 422 amino acid peptide of 45.7 kDa. Possum ZP3 has a 46% amino acid identity with eutherian ZP3 and shares similar structural characteristics including 12 conserved cysteine residues, N-linked glycosylation sites and hydrophobic regions. Like human and rabbit ZP1 an altered furin cleavage site upstream of the C-terminal hydrophobic domain also occurs in possum ZP3 (S-R-K-R), suggestive of processing by a furin-related endoprotease. Expression of brushtail possum ZP3 is limited to the ovary. Characterisation of brushtail possum ZP3 will enable examination of its functional role in marsupial fertilisation and its effectiveness as an immunocontraceptive agent.  相似文献   

17.
The ZP3 gene encodes for a zona glycoprotein that serves as both a cell-specific binding site for capacitated spermatozoa and an inducer of acrosomal exocytosis during fertilisation. In this study we have determined the nucleotide sequence of rat ZP3 (accession no. Y10823), predicted primary amino acid structure and determined the cellular origin of this molecule within the ovary. Rat ZP3 was found to have an open reading frame of 1272 nucleotides encoding a polypeptide chain of 424 amino acids that was expressed exclusively by the actively growing oocyte population. Rat ZP3 exhibited 91%, 78% and 66% identity with the mouse, hamster and human homologues, respectively. Key features of mouse ZP3, including the number and location of cysteine and proline residues and N-linked glycosylation sites, were also conserved in the rat homologue. The putative O-linked glycosylation sites, a series of serine residues at ZP3(329-334), were also conserved in rat and mouse ZP3, although immediately downstream of this site the amino acid sequences deviated over a short stretch of amino acids. The hydropathicity profile revealed two hydrophobic domains. The first was associated with a putative N-terminal signal sequence which is unusual in the rat in possessing a proline residue at the -1 position relative to the signal cleavage site, a feature it shares with human and marmoset ZP3 but not mouse. The second hydrophobic domain was observed at the C-terminus downstream of a TGF-beta type III receptor domain that appears to be common to all ZP3 sequences examined to date.  相似文献   

18.
19.
The zona pellucida (ZP) is an extracellular coat synthesized and secreted by the oocyte during follicular development and surrounding the plasma membrane of mammalian eggs. To date, the mechanism of synthesis and secretion, mode of assembly, and intracellular trafficking of the ZP glycoproteins have not been fully elucidated. Using antibodies against mouse ZP1, ZP2, and ZP3 in conjunction with the protein A-gold technique, we have shown an association of immunolabeling with the Golgi apparatus, secretory granules, and a complex structure called vesicular aggregate, respectively, in mouse ovarian follicles. In contrast, the neighboring granulosa cells were not reactive to any of the three antibodies used. Immunolabeling of ZP1, ZP2, and ZP3 was detected throughout the entire thickness of the ZP, irrespective of the developmental stage of ovarian follicles. Double and triple immunolocalization studies, using antibodies tagged directly to different sizes of gold particles, revealed an asymmetric spatial distribution of the three ZP glycoproteins in the zona matrix at various stages of follicular development. All three glycoproteins were specifically localized over small patches of darkly stained flocculent substance dispersed throughout the zona matrix. Very often, ZP1, ZP2, and ZP3 were found in close association. These results confirm findings from previous studies demonstrating that ovarian oocytes and not granulosa cells are the only source for mouse ZP glycoproteins. In addition, results from our morphological and immunocytochemical experiments suggest that the vesicular aggregates in the ooplasm are likely to serve as an intermediary in the synthesis and secretion of ZP glycoproteins. The stoichiometric disposition of ZP1, ZP2, and ZP3 in the zona matrix as revealed by double and triple immunolocalization studies provide further insight into some of the unanswered questions pertinent to the current model of mouse ZP structure proposed by the Wassarman group.  相似文献   

20.
Many eukaryotic extracellular proteins share a sequence of unknown function, called the zona pellucida (ZP) domain. Among these proteins are the mammalian sperm receptors ZP2 and ZP3, non-mammalian egg coat proteins, Tamm-Horsfall protein (THP), glycoprotein-2 (GP-2), alpha- and beta-tectorins, transforming growth factor (TGF)-beta receptor III and endoglin, DMBT-1 (deleted in malignant brain tumour-1), NompA (no-mechanoreceptor-potential-A), Dumpy and cuticlin-1 (refs 1,2). Here, we report that the ZP domain of ZP2, ZP3 and THP is responsible for polymerization of these proteins into filaments of similar supramolecular structure. Most ZP domain proteins are synthesized as precursors with carboxy-terminal transmembrane domains or glycosyl phosphatidylinositol (GPI) anchors. Our results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly. Finally, we suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of alpha-tectorin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号