首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The promotion of membrane fusion by Newcastle disease virus (NDV) requires an interaction between the viral hemagglutinin-neuraminidase (HN) and fusion (F) proteins, although the mechanism by which this interaction regulates fusion is not clear. The NDV HN protein exists as a tetramer composed of a pair of dimers. Based on X-ray crystallographic studies of the NDV HN globular domain (S. Crennell et al., Nat. Struct. Biol. 7:1068-1074, 2000), it was proposed that the protein undergoes a significant conformational change from an initial structure having minimal intermonomeric contacts to a structure with a much more extensive dimer interface. This conformational change was predicted to be integral to fusion promotion with the minimal interface form required to maintain F in its prefusion state until HN binds receptors. However, no evidence for such a conformational change exists for any other paramyxovirus attachment protein. To test the NDV model, we have engineered a pair of intermonomeric disulfide bonds across the dimer interface in the globular domain of an otherwise non-disulfide-linked NDV HN protein by the introduction of cysteine substitutions for residues T216 and D230. The disulfide-linked dimer is formed both intracellularly and in the absence of receptor binding and is efficiently expressed at the cell surface. The disulfide bonds preclude formation of the minimal interface form of the protein and yet enhance both receptor-binding activity at 37 degrees C and fusion promotion. These results confirm that neither the minimal interface form of HN nor the proposed drastic conformational change in the protein is required for fusion.  相似文献   

2.
For many paramyxoviruses, including Newcastle disease virus (NDV), syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins. Because a potential interaction in paramyxovirus-infected cells has never been demonstrated, such as interaction was explored by using coimmunoprecipitation and cross-linking. Both HN and F proteins could be precipitated with heterologous antisera after a 5-min radioactive pulse as well as after a 2-h chase in nonradioactive medium, but at low levels. Chemical cross-linking increased detection of complexes containing HN and F proteins at the cell surface. After cross-linking, intermediate- as well as high-molecular-weight species containing both proteins were precipitated with monospecific antisera. Precipitation of proteins with anti-HN after cross-linking resulted in the detection of complexes which electrophresed in the stacker region of the gel, from 160 to 300 kDa, at 150 kDa, and at 74 kDa. Precipitates obtained with anti-F after cross-linking contained species which migrated in the stacker region of the gel, between 160 and 300 kDa, at 120 kDa, and at 66 kDa. The three to four discrete complexes ranging in size from 160 to 300 kDa contained both HN and F proteins when precipitated with either HN or F antisera. That cross-linking of complexes containing both HN and F proteins was not simply a function of overexpression of viral glycoproteins at the cell surface was addressed by demonstrating cross-linking at early time points postinfection, when levels of viral surface glycoproteins are low. Use of cells infected with an avirulent strain of NDV showed that chemically cross-linked HN and F proteins were precipitated independent of cleavage of F0. Furthermore, under conditions that maximized HN protein binding to its receptor, there was no change in the percentages of HN and F0 proteins precipitated with heterologous antisera, but a decrease in F1 protein precipitated was observed upon attachment. These data argue that the HN and F proteins interact in the rough endoplasmic reticulum. Upon attachment of the HN protein to its receptor, the HN protein undergoes a conformational change which causes a conformational change in the associated F protein, releasing the hydrophobic fusion peptide into the target membrane and initiating fusion.  相似文献   

3.
It has been shown that the L289A-mutated Newcastle disease virus (NDV) fusion (F) protein gains the ability to promote fusion of Cos-7 cells independent of the viral hemagglutinin-neuraminidase (HN) protein and exhibits a 50% enhancement in HN-dependent fusion over wild-type (wt) F protein. Here, we show that HN-independent fusion by L289A-F is not exhibited in BHK cells or in several other cell lines. However, similar to the results in Cos-7 cells, the mutated protein plus HN does promote 50 to 70% more fusion above wt levels in all of the cell lines tested. L289A-F protein exhibits the same specificity as the wt F protein for the homologous HN protein, as well as NDV-human parainfluenza virus 3 HN chimeras. The mutated F protein promotes fusion more effectively than the wt when it is coexpressed with either the chimeras or HN proteins deficient in receptor recognition activity. In addition, its fusogenic activity is significantly more resistant to removal of sialic acid on target cells. These findings are consistent with the demonstration that L289A-F interacts more efficiently with wt and mutated HN proteins than does wt F by a cell surface coimmunoprecipitation assay. Taken together, these findings indicate that L289A-F promotes fusion by a mechanism analogous to that of the wt protein with respect to the HN-F interaction but is less dependent on the attachment activity of HN. The phenotype of the mutated F protein correlates with a conformational change in the protein detectable by two different monoclonal antibodies. This conformational change may reflect a destabilization of F structure induced by the L289A substitution, which may in turn indicate a lower energy requirement for fusion activation.  相似文献   

4.
Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal.  相似文献   

5.
We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.  相似文献   

6.
Li J  Quinlan E  Mirza A  Iorio RM 《Journal of virology》2004,78(10):5299-5310
The Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein mediates attachment to cellular receptors. The fusion (F) protein promotes viral entry and spread. However, fusion is dependent on a virus-specific interaction between the two proteins that can be detected at the cell surface by a coimmunoprecipitation assay. A point mutation of I175E in the neuraminidase (NA) active site converts the HN of the Australia-Victoria isolate of the virus to a form that can interact with the F protein despite negligible receptor recognition and fusion-promoting activities. Thus, I175E-HN could represent a fusion intermediate in which HN and F are associated and primed for the promotion of fusion. Both the attachment and fusion-promoting activities of this mutant HN protein can be rescued either by NA activity contributed by another HN protein or by a set of four substitutions at the dimer interface. These substitutions were identified by the evaluation of chimeras composed of segments from HN proteins derived from two different NDV strains. These findings suggest that the I175E substitution converts HN to an F-interactive form, but it is one for which receptor binding is still required for fusion promotion. The data also indicate that the integrity of the HN dimer interface is critical to its receptor recognition activity.  相似文献   

7.
The tetrameric paramyxovirus hemagglutinin-neuraminidase (HN) protein mediates attachment to sialic acid-containing receptors as well as cleavage of the same moiety via its neuraminidase (NA) activity. The X-ray crystallographic structure of an HN dimer from Newcastle disease virus (NDV) suggests that a single site in two different conformations mediates both of these activities. This conformational change is predicted to involve an alteration in the association between monomers in each HN dimer and to be part of a series of changes in the structure of HN that link its recognition of receptors to the activation of the other viral surface glycoprotein, the fusion protein. To explore the importance of the dimer interface to HN function, we performed a site-directed mutational analysis of residues in a domain defined by residues 218 to 226 at the most membrane-proximal part of the dimer interface in the globular head. Proteins carrying substitutions for residues F220, S222, and L224 in this domain were fusion deficient. However, this fusion deficiency was not due to a direct effect of the mutations on fusion. Rather, the fusion defect was due to a severely impaired ability to mediate receptor recognition at 37 degrees C, a phenotype that is not attributable to a change in NA activity. Since each of these mutated proteins efficiently mediated attachment in the cold, it was also not due to an inherent inability of the mutated proteins to recognize receptors. Instead, the interface mutations acted by weakening the interaction between HN and its receptor(s). The phenotype of these mutants correlates with the disruption of intermonomer subunit interactions.  相似文献   

8.
Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 Å, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.  相似文献   

9.
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.  相似文献   

10.
Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion. Therefore, we explored whether a histidine moiety in HN could similarly direct activation of the fusion protein. In membrane fusion assays, the histidine substitution mutants of HN (H247A of Sendai virus and H245A of human parainfluenza virus 3) had impaired membrane fusion promotion activity without significant changes in other biological activities. Synthetic 30-mer peptides corresponding to regions of the two HN proteins containing these histidine residues rescued the fusion promoting activity of the mutants, whereas peptides with histidine residues substituted by alanine did not. These histidine-containing peptides also activated F-virosome fusion with hepatocytes both in the presence and in the absence of mutant HN in the virosome. We provide evidence that the HN-mimicking peptides promote membrane fusion, revealing a specific histidine “switch” in HN that triggers fusion.  相似文献   

11.
The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.  相似文献   

12.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

13.
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a “4-heads-down” conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a “2-heads-up/2-heads-down” conformation where two heads (covalent dimers) are in the “down position,” forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an “up position.” The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.  相似文献   

14.
Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger.  相似文献   

15.
Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin-neuraminidase (HN) protein collectively contribute to F activation from a metastable native state. F-mediated fusion was reversibly arrested by low temperature or membrane-incorporated lipids, and the resulting F intermediates were characterized. N-1 inhibited an earlier F intermediate than C-1. Co-expression of HN with F lowered the temperature required to attain the N-1-inhibited intermediate, consistent with HN binding to its receptor stimulating a conformational change in F. C-1 bound and inhibited an intermediate of F that could be detected until a point directly preceding membrane merger. The data are consistent with C-1 binding a pre-hairpin intermediate of F and with helical bundle formation being coupled directly to membrane fusion.  相似文献   

16.
The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5.  相似文献   

17.
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.  相似文献   

18.
The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein responsible for attachment to receptors containing sialic acid, neuraminidase (NA) activity, and the promotion of membrane fusion, which is induced by the fusion protein. Analysis of the three-dimensional structure of Newcastle disease virus (NDV) HN protein revealed the presence of a large pocket, which mediates both receptor binding and NA activities. Recently, a second sialic acid binding site on HN was revealed by cocrystallization of the HN with a thiosialoside Neu5Ac-2-S-alpha(2,6)Gal1OMe, suggesting that NDV HN contains an additional sialic acid binding site. To evaluate the role of the second binding site on the life cycle of NDV, we rescued mutant viruses whose HNs were mutated at Arg516, a key residue that is involved in the second binding site. Loss of the second binding site on mutant HNs was confirmed by the hemagglutination inhibition test, which uses an inhibitor designed to block the NA active site. Characterization of the biological activities of HN showed that the mutation at Arg516 had no effect on NA activity. However, the fusion promotion activity of HN was substantially reduced by the mutation. Furthermore, the mutations at Arg516 slowed the growth rate of virus in tissue culture cells. These results suggest that the second binding site facilitates virus infection and growth by enhancing the fusion promotion activity of the HN.  相似文献   

19.
Newcastle disease virus (NDV) entry into host cells is mediated by the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. We previously showed that production of free thiols in F protein is required for membrane fusion directed by F protein (S. Jain et al., J. Virol. 81:2328-2339, 2007). In the present study we evaluated the oxidation state of F protein in virions and virus-like particles and its relationship to activation of F protein by HN protein, F protein conformational intermediates, and virus-cell fusion. F protein, in particles, does not have free thiols, but free thiols were produced upon binding of particles to target cells. Free thiols were produced at 16°C in F protein in virions bound to the target cells. They also appeared in different fusion defective mutant F proteins. Free thiols were produced in the presence of mutant HN proteins that are defective in F protein activation but are attachment competent. These results suggest that free thiols appear prior to any of the proposed major conformational changes in F protein which accompany fusion activation. These results also indicate that HN protein binding to its receptor likely facilitates the interaction between F protein and host cell isomerases, leading to reduction of disulfide bonds in F protein. Taken together, these results show that free thiols are produced in F protein at a very early stage during the onset of fusion and that the production of free thiols is required for fusion in addition to activation by HN protein.  相似文献   

20.
Melanson VR  Iorio RM 《Journal of virology》2004,78(23):13053-13061
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus mediates attachment to sialic acid receptors, as well as cleavage of the same moiety. HN also interacts with the other viral glycoprotein, the fusion (F) protein, to promote membrane fusion. The ectodomain of the HN spike consists of a stalk and a terminal globular head. The most conserved part of the stalk consists of two heptad repeats separated by a nonhelical intervening region (residues 89 to 95). Several amino acid substitutions for a completely conserved proline residue in this region not only impair fusion and the HN-F interaction but also decrease neuraminidase activity in the globular domain, suggesting that the substitutions may alter HN structure. Substitutions for L94 also interfere with fusion and the HN-F interaction but have no significant effect on any other HN function. Amino acid substitutions at other positions in the intervening region also modulate only fusion. In all cases, diminished fusion correlates with a decreased ability of the mutated HN protein to interact with F at the cell surface. These findings indicate that the intervening region is critical to the role of HN in the promotion of fusion and may be directly involved in its interaction with the homologous F protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号