首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5–100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, Fmed) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both Fmed and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase (~30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.  相似文献   

2.
Ten male volunteers underwent a period of prolonged bed rest. Four subjects performed exercise countermeasures 2-3 times per week, while 6 subjects received no countermeasures. After bed rest plantarflexor force declined significantly (P < 0.001) in both exercise (-42%) and control (-55%) groups. The internal architecture of the gastrocnemius medialis (GM) muscle was significantly altered. This was associated with a reduction in fascicle shortening during isometric contraction. Exercise countermeasures partially mitigated the loss of muscle force and function following 90 days of bed rest.  相似文献   

3.
Regional changes in muscle mass following 17 weeks of bed rest.   总被引:5,自引:0,他引:5  
This work reports on the muscle loss and recovery after 17 wk of continuous bed rest and 8 wk of reambulation in eight normal male volunteers. Muscle changes were assessed by urinary levels of 3-methylhistidine (3-MeH), nitrogen balance, dual-photon absorptiometry (DPA), magnetic resonance imaging (MRI), and isokinetic muscle performance. The total body lean tissue loss during bed rest calculated from nitrogen balance was 3.9 +/- 2.1 (SD) kg (P < 0.05). Although the total loss is minimal, DPA scans showed that nearly all of the lean tissue loss occurred in the lower limbs. Similarly, MRI muscle volume measurements showed greater percent loss in the limbs relative to the back muscles. MRI, DPA, and nitrogen balance suggest that muscle atrophy continued throughout bed rest with rapid recovery after reambulation. Isokinetic muscle strength decreased significantly (P < 0.05) in the thigh and calf with no loss in the arms and with rapid recovery during reambulation. We conclude that there is great variability in the degree and location of muscle loss in bed rest and that the lower limb muscles are primarily affected.  相似文献   

4.
We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.  相似文献   

5.
Prolonged inactivity associated with bed rest in a clinical setting or spaceflight is frequently associated with hypercortisolemia and inadequate caloric intake. Here, we determined the effect of 28 days of bed rest (BR); bed rest plus hypercortisolemia (BRHC); and bed rest plus essential amino acid (AA) and carbohydrate (CHO) supplement (BRAA) on the size and function of single slow- and fast-twitch muscle fibers. Supplementing meals, the BRAA group consumed 16.5 g essential amino acids and 30 g sucrose at 1100, 1600, and 2100 h, and the BRHC subjects received 5 daily doses of 10–15 mg of oral hydrocortisone sodium succinate throughout bed rest. Bed rest induced atrophy and loss of force (mN) and power (µN·FL·s–1) in single fibers was exacerbated by hypercortisolemia where soleus peak force declined by 23% in the type I fiber from a prevalue of 0.78 ± 0.02 to 0.60 ± 0.02 mN post bed rest (compared to a 7% decline with bed rest alone) and 27% in the type II fiber (1.10 ± 0.08 vs. 0.81 ± 0.05 mN). In the BRHC group, peak power dropped by 19, 15, and 11% in the soleus type I, and vastus lateralis (VL) type I and II fibers, respectively. The AA/CHO supplement protected against the bed rest-induced loss of peak force in the type I soleus and peak power in the VL type II fibers. These results provide evidence that an AA/CHO supplement might serve as a successful countermeasure to help preserve muscle function during periods of relative inactivity. isotonic contractile properties; peak force and power; calcium sensitivity; essential amino acids  相似文献   

6.
In 5 healthy male subjects the changes in muscle fibre conduction velocity, mean power frequency, mean EMG voltage, and force in the quadriceps were measured during submaximal fatiguing contractions, ranging from 60 to 100% of maximum force. Surface EMG was recorded from vastus lateralis. The analysis was divided into 2 parts - before and after force had begun to decline (endurance point). The conduction velocity and mean power frequency declined less before the endurance point than after this point. For all forces, the mean EMG voltage increased up to the endurance point. After the endurance point, the effect of fatigue had a decreasing influence on mean EMG voltage.  相似文献   

7.
The purpose of this study was to investigate the effects of static stretching of the gastrocnemius muscle on maximal vertical jump performance using electromyographic activity (EMG) of the gastrocnemius musculature to record muscle activation during vertical jump performance. Fourteen healthy adults (8 men and 6 women) aged 18-34 years, who were familiar with the vertical jumping task and had no lower extremity injuries or any bone or joint disorders within the past year, served as participants for this study. After a brief warm-up, participants performed the following sequence: (a) three baseline maximal vertical jump trials, (b) 15 minutes of quiet sitting and three 30-second bilateral static stretches of the gastrocnemius muscles, and (c) 3 maximal vertical jump trials. Jump height data were collected using the Kistler force plate, while muscle activity was recorded during the jumping and stretching trials using a Noraxon telemetry EMG unit. Vertical jump height data as well as EMG values were averaged for the 3 trials and analyzed using paired t-tests for pre- and poststretching (alpha = 0.05). Vertical jump height was 5.6% lower when poststretch heights were compared with prestretch heights (t = -4.930, p < 0.005). Gastrocnemius EMG was 17.9% greater when the EMG during poststretch jumps was compared with prestretch jumps (t = 2.805, p < 0.02). The results from this study imply that, despite increased gastrocnemius muscle activity, static stretching of the gastrocnemius muscles had a negative effect on maximal jumping performance. The practical importance concerns coaches and athletes, who may want to consider the potential adverse effects of performing static stretching of the gastrocnemius muscles only before a jumping event, as jump height may be negatively affected. Future research is required to identify the mechanisms that affect vertical jump performance.  相似文献   

8.
The present investigation, the first in the field, was aimed at analyzing differentially, on individual samples, the effects of 55 days of horizontal bed rest, a model for microgravity, on myosin heavy and myosin light chain isoforms distribution (by SDS) and on the proteome (by 2-D DIGE and MS) in the vastus lateralis (VL), a mixed type II/I (~50:50%) head of the quadriceps and in the calf soleus (SOL), a predominantly slow (~35:65%) twitch muscle. Two separate studies were performed on six subjects without (BR) and six with resistive vibration exercise (RVE) countermeasures, respectively. Both VL and SOL underwent in BR decrements of ~15% in cross-sectional area and of ~22% in maximal torque that were prevented by RVE. Myosin heavy chain distribution showed increased type I and decreased type IIA in BR both in VL and in SOL, the opposite with RVE. A substantial downregulation of proteins involved in aerobic metabolism characterized both in SOL and VL in BR. RVE reversed the pattern more in VL than in SOL, whereas proteins involved in anaerobic glycolysis were upregulated. Proteins from the Z-disk region and from costamers were differently dysregulated during bed rest (both BR and RVE), particularly in VL.  相似文献   

9.
Lower limb skeletal muscle function after 6wk of bed rest   总被引:7,自引:0,他引:7  
Berg, H. E., L. Larsson, and P. A. Tesch. Lower limbskeletal muscle function after 6 wk of bed rest. J. Appl. Physiol. 82(1): 182-188, 1997.Force,electromyographic (EMG) activity, muscle mass, and fibercharacteristics were studied in seven healthy men before and after 6 wkof bed rest. Maximum voluntary isometric and concentric knee extensortorque decreased (P < 0.05)uniformly across angular velocities by 25-30% after bed rest.Maximum quadricep rectified EMG decreased by 19 ± 23%, whereassubmaximum (100-Nm isometric action) EMG increased by 44 ± 28%.Knee extensor muscle cross-sectional area (CSA), assessed by usingmagnetic resonance imaging, decreased by 14 ± 4%. Maximum torqueper knee extensor CSA decreased by 13 ± 9%. Vastus lateralis fiberCSA decreased 18 ± 14%. Neither type I, IIA, and IIB fiberpercentages nor their relative proportions of myosin heavy chain (MHC)isoforms were altered after bed rest. Because the decline in strengthcould not be entirely accounted for by decreased muscle CSA, it issuggested that the strength loss is also due to factors resulting indecreased neural input to muscle and/or reduced specifictension of muscle, as evidenced by a decreased torque/EMG ratio.Additionally, it is concluded that muscle unloading in humans does notinduce important changes in fiber type or MHC composition or in vivomuscle contractile properties.

  相似文献   

10.
11.
Fat accumulates in the bone marrow of lumbar vertebrae with bed rest. Exercise with or without whole body vibration may counter this effect. Our objectives were to measure 1) the vertebral fat fraction (VFF) of men subjected to bed rest who performed resistive exercises with (RVE, n = 7) or without whole body vibration(RE, n = 8) or no exercise (CTR, n = 9) using three MRI techniques; and 2) changes in peripheral blood counts. Twenty-four healthy men (age: 20-45 yr) underwent -6° head-down tilt (HDT) bed rest for 60 days. MRI was performed using three techniques (fat saturation, proton spectroscopy, and in and out of phase) to measure the fat fraction of L(3), L(4), and/or L(5) at baseline, mid-HDT, and end-HDT. Erythrocytes and leukocytes were counted at HDT days 19, 33, 47, 54, and 60. The mean absolute VFF was increased in the CTR group at mid-HDT and end-HDT (+3.9 ± 1.3 and +3.6 ± 1.2%, respectively, both P < 0.05). The RE group had a smaller VFF change than the CTR group at mid-HDT (-0.9 ± 1.2 vs. +3.9 ± 1.3%, P < 0.05). The RVE group had a smaller VFF change than the CTR group at end-HDT (-2.6 ± 1.9 vs. +3.5 ± 1.2%, P < 0.05). Erythrocyte counts were increased in all groups at HDT day 19 and HDT day 33 and in the RE group at HDT day 54 (all P < 0.05). Bed rest for 60 days at -6° HDT increased lumbar VFF in men beyond natural involution. RVE and RE regimens effectively prevented VFF accumulation. Higher erythrocyte counts were not altered by RVE or RE. Whole body vibration, along with RE administered to people with prolonged immobility, may prevent fat accumulation in their bone marrow.  相似文献   

12.
Researchers examined the extent to which short-term bed rest affects maximal isometric force produced by the plantar and dorsal flexors of the ankle. Results indicate an increase in average values of maximal isometric torque throughout the study, a significant increase in isometric EMG between control and bed rest subjects, and a significant isometric EMG augmentation in bed rest subjects by the end of the study. The effects of training on maximal isometric torque and muscle function impairment are discussed.  相似文献   

13.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

14.
The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC2force = − 0.6 + 0.9*%MVCramp, although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13–79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.  相似文献   

15.
Maximal isometric force and electromyograph (EMG) activity of biceps brachii muscle during bilateral sustained elbow flexion were followed in 25 right-handed oarsmen. The percentage decline in force was greater for the left than for the right arm. Also, the mean power frequency (MPF) and the root mean square (rms) value of the EMG amplitude decreased more for the left than for the right arm. It was hypothesized that a common drive would indicate that the two forces curves would be highly correlated during the nonfatigued period, but the level of cross-correlation would decline during muscle fatigue. For the first 4 s of the contraction, the cross-correlation between the right and left force was high (r = 0.99), but thereafter it declined rapidly to a constant level. The decline of the cross-correlation was accompanied by a similar decrease in the correlation between the right and left EMG activations (MPF and rms). Thus, the decline in the cross-correlation level of force accompanied by a similar decrease in the correlation level of EMG would suggest a fatigue-induced neural derangement of the common drive.  相似文献   

16.
The purpose of this study was to examine the co-activation of the rectus femoris (RF) and biceps femoris (BF) during drop jumping exercises using the co-contraction index (CI). Ten trained male long jumpers performed drop jumps from 20 cm (DJ20), 40 cm (DJ40) and 60 cm (DJ60) on a force platform. Surface electromyographic (EMG) activity of the RF and BF, vertical ground reaction force data and knee joint angular displacement and angular velocities were recorded and normalized as percentage of maximum isometric values. The CI was calculated for the pre-contact, braking and propulsive phases of the jump using four methods: (1) by dividing the double integrated antagonistic activity by the sum of the RF and BF EMG; (2) by finding the amount of overlap between the linear envelopes of the agonist and antagonist muscles and dividing by the number of data points; (3) by calculating the co-contraction at any instant point of time; and (4) by dividing the BF integrated activity by the total registered muscle activity around the knee. The CI ranged from 13.03+/-9.33 to 70.80+/-25.81%, depending on the estimation method used. A two-way analysis of variance (ANOVA) indicated that the CI was not affected by drop jumping height (p>0.05) while it was significantly higher (p<0.05) in the pre-contact phase compared to the braking and propulsion phases. The CI can be useful when examining muscle co-activation using EMG measurements in drop jumps. However, the conclusions on muscle co-activation depend on the equation used to estimate CI and therefore a commonly accepted method is necessary.  相似文献   

17.
Surface electromyography (EMG) has been used extensively to estimate muscular load in studies of work related musculoskeletal disorders, especially for the trapezius muscle. The occurrences of periods of EMG silence (gaps), the time below a predetermined threshold level (muscular rest) and various percentiles of the amplitude distribution (APDF) are commonly used summary measures. However, the effects of the criteria used to calculate these measures (e.g., gap duration, threshold level, normalisation method) on the sensitivity of these measures to accurately differentiate work loads is not well known.Bilateral trapezius EMG was recorded, for a full workday, for 58 subjects following both maximal (MVE) and submaximal (RVE) reference contractions. Gap frequency, muscular rest, and percentiles were derived for eight fundamental work tasks. The calculations were performed using different gap duration criteria, threshold levels and normalisation methods.A gap duration of less than 1/2 s, and threshold level approximately 0.3% MVE for gap frequency, and approximately 0.5% MVE for muscular rest, were the criteria that optimised sensitivity to task differences. Minimal sensitivity to tasks and a high sensitivity to individuals was obtained using gap frequency with a threshold level of approximately 1% MVE. Normalisation to RVE, rather than MVE, improved sensitivity to differences between tasks, and reduced undesirable variability. Muscular rest was more sensitive to task differences than APDF percentiles.  相似文献   

18.
The objective was to investigate muscle fatigue measuring changes in force output and force tremor and electromyographic activity (EMG) during two sustained maximal isometric contractions for 60s: (1) concurrent hand grip and elbow flexion (HG and EF); or (2) hand grip and elbow extension (HG and EE). Each force tremor amplitude was decomposed into four frequency bands (1-3, 4-10, 11-20, and 21-50Hz). Surface EMGs were recorded from the flexor digitorum superficialis (FDS), extensor digitorum (ED), biceps brachii (BB) and lateral head of triceps brachii (TB). The HG and EF forces for the HG and EF and the HG force for the HG and EE declined rapidly, whereas the EE force remained almost constant near to the initial value for the first 40s and then declined. The decrease in EMG amplitude was observed not for the FDS muscle but for the ED muscle. The HG tremor amplitude for each frequency band showed similar decreasing rate, whereas the decreases in EF and EE tremor amplitudes for the lower band (below 10Hz) were slower than those for the higher band (above 11Hz). The neuromuscular mechanisms underlying muscle fatigue during sustained maximal concurrent contractions of hand grip and elbow flexion or extension are discussed.  相似文献   

19.
ObjectivesTo quantify the variance introduced to trapezius electromyography (EMG) through normalization by sub-maximal reference voluntary exertions (RVE), and to investigate the effect of increased normalization efforts as compared to other changes in data collection strategy on the precision of occupational EMG estimates.MethodsWomen performed four RVE contractions followed by 30 min of light, cyclic assembly work on each of two days. Work cycle EMG was normalized to each of the RVE trials and seven exposure parameters calculated. The proportions of exposure variance attributable to subject, day within subject, and cycle and normalization trial within day were determined. Using this data, the effect on the precision of the exposure mean of altering the number of subjects, days, cycles and RVEs during data collection was simulated.ResultsFor all exposure parameters a unique component of variance due to normalization was present, yet small: less than 4.4% of the total variance. The resource allocation simulations indicated that marginal improvements in the precision of a group exposure mean would occur above three RVE repeats for EMG collected on one day, or beyond two RVEs for EMG collected on two or more days.  相似文献   

20.
This study assessed the effects of inactivity on GLUT-4 content of human skeletal muscle and evaluated resistance training as a countermeasure to inactivity-related changes in GLUT-4 content in skeletal muscle. Nine young men participated in the study. For 19 days, four control subjects remained in a -6 degrees head-down tilt at all times throughout bed rest, except for showering every other day. Five training group subjects also remained at bed rest, except during resistance training once in the morning. The resistance training consisted of 30 isometric maximal voluntary contractions for 3 s each; leg-press exercise was used to recruit the extensor muscles of the ankle, knee, and hip. Pauses (3 s) were allowed between bouts of maximal contraction. Muscle biopsy samples were obtained from the lateral aspect of vastus lateralis (VL) muscle before and after the bed rest. GLUT-4 content in VL muscle of the control group was significantly decreased after bed rest (473 +/- 48 vs. 398 +/- 66 counts. min-1. microgram membrane protein-1, before and after bed rest, respectively), whereas GLUT-4 significantly increased in the training group with bed rest (510 +/- 158 vs. 663 +/- 189 counts. min-1. microgram membrane protein-1, before and after bed rest, respectively). The present study demonstrated that GLUT-4 in VL muscle decreased by approximately 16% after 19 days of bed rest, and isometric resistance training during bed rest induced a 30% increase above the value of GLUT-4 before bed rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号