首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We describe a facile gold nanoparticle (AuNP)-mediated colorimetric method for real-time detection of target DNA in conjugation with our unique isothermal target and signaling probe amplification (iTPA) method, comprising novel ICA (isothermal chain amplification) and CPT (cycling probe technology). Under isothermal conditions, the iTPA simultaneously amplifies the target and signaling probe through two displacement events induced by a combination of four specially designed primers, the strand displacement activity of DNA polymerase, and the RNA degrading activity of RNase H. The resulting target amplicons are hybridized with gold nanoparticle cross-linking assay (GCA) probes having a DNA-RNA-DNA chimeric form followed by RNA cleavage by RNase H in the CPT step. The intact GCA probes were designed to cross-link two sets of DNA-AuNPs conjugates in the absence of target DNA, inducing aggregation (blue color) of AuNPs. On the contrary, the presence of target DNA leads to cleavage of the GCA probes in proportion to the amount of amplified target DNA and the solution remains red in color without aggregation of AuNPs. Relying on this strategy, 10(2) copies of target Chlamydia trachomatis plasmid were successfully detected in a colorimetric manner. Importantly, all the procedures employed up to the final detection of the target DNA were performed under isothermal conditions without requiring any detection instruments. Therefore, this strategy would greatly benefit convenient, real-time monitoring technology of target DNA under restricted environments.  相似文献   

2.
A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (∼5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB–RNase H scheme can be applied to a broad range of nucleic acid amplification methods.  相似文献   

3.
Rolling-circle amplification (RCA) and ramification amplification (RAM, also known as hyperbranched RCA) are isothermal nucleic acid amplification technologies that have gained a great application in in situ signal amplification, DNA and protein microarray assays, single nucleotide polymorphism detection, as well as clinical diagnosis. Real-time detection of RCA or RAM products has been a challenge because of most real-time detection systems, including Taqman and Molecular Beacon, are designed for thermal cycling-based DNA amplification technology. In the present study, we describe a novel fluorescent probe construct, termed molecular zipper, which is specially designed for quantifying target DNA by real-time monitoring RAM reactions. Our results showed that the molecular zipper has very low background fluorescence due to the strong interaction between two strands. Once it is incorporated into the RAM products its double strand region is opened by displacement, therefore, its fluorophore releases a fluorescent signal. Applying the molecular zipper in RAM assay, we were able to detect as few as 10 molecules within 90 min reaction. A linear relationship was observed between initial input of targets and threshold time (R2 = 0.985). These results indicate that molecular zipper can be applied to real-time monitoring and qualification of RAM reaction, implying an amenable method for automatic RAM-based diagnostic assays.  相似文献   

4.
Warnon S  Zammatteo N  Alexandre I  Hans C  Remacle J 《BioTechniques》2000,28(6):1152-6, 1159-60
Cycling probe technology (CPT) is a simple signal amplification method for the detection of specific target DNA sequences. CPT uses a chimeric DNA-RNA-DNA probe that is cut by RNase H when bound to its complementary target sequence. In this study, a hybridization assay was developed to detect biotinylated CPT products that result from the amplification of a Mycobacterium tuberculosis complex sequence. The chimeric probe was specifically designed to avoid the formation of secondary structures. The chosen capture probe was perfectly complementary to and was the same size as OL2, one of the two CPT products. The assay was based on the observation that a long sequence, such as the initial probe, was destabilized when bound to a small capture probe as a result of steric hindrance. The capture probe preferentially bound OL2 rather than the long initial probe. We added a prehybridization step with a helper DNA to enhance this discrimination between the two sequences. Colorimetric detection was performed using a peroxidase-streptavidin conjugate. After optimization, the non-isotopic hybridization assay allowed the detection of around 10 amol of target DNA. Besides being faster and easier to perform, this detection method was compared to electrophoresis separation and gave similar results.  相似文献   

5.
Abstract

Cycling Probe Technology (CPT) is a signal amplification system that allows detection of nucleic acid target sequences without target amplification. CPT employs a sequence specific chimeric probe, typically DNA-RNA-DNA, which hybridizes to a complementary target DNA sequence and becomes a substrate for RNase H. Cleavage occurs at the RNA internucleotide linkages and results in dissociation of the probe from the target, thereby making it available for the next probe molecule. This communication describes the use of oligonucleotides attached to solid supports for target capture and release followed by solution and solid phase cycling. Through the attachment of chimeric probes to Sera-MagTM magnetic particles (SMP) a simple and effective method of separating the cleaved probe from non-cycled probe has been developed. By capturing the target DNA on particles and separating it from the extraneous non-specific DNA we are able to dramatically reduce background and thus discriminate between samples of Methicillin Resistant (MRSA) and Methicillin Sensitive (MSSA) Staphylococcus Aureus. We conjugated oligonucleotide probes to SMPs (~1 um) and Nylon beads (NB) which were coated with ID Biomedical's proprietary coating materials (R, patent pending). The general structure of the constructs is shown below:  相似文献   

6.
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method.  相似文献   

7.
Herein, the ribonuclease H (RNase H) activity assay based on the target‐activated DNA polymerase activity is described. In this method, a detection probe composed of two functional sequences, a binding site for DNA polymerase and a catalytic substrate for RNase H, serves as a key component. The detection probe, at its initial state, suppresses the DNA polymerase activity, but it becomes destabilized by RNase H, which specifically hydrolyzes RNA in RNA/DNA hybrid duplexes. As a result, DNA polymerase recovers its activity and initiates multiple primer extension reactions in a separate TaqMan probe‐based signal transduction module, leading to a significantly enhanced fluorescence “turn‐on” signal. This assay can detect RNase H activity as low as 0.016 U mL?1 under optimized conditions. Furthermore, its potential use for evaluating RNase H inhibitors, which have been considered potential therapeutic agents against acquired immune deficiency syndrome (AIDS), is successfully explored. In summary, this approach is quite promising for the sensitive and accurate determination of enzyme activity and inhibitor screening.  相似文献   

8.
We have developed a AuNP-CTG based probing system that is applicable to the detection of many units of CAG repeat sequences which was synthesized by a rolling circle amplification (RCA) system with changes in fluorescence. We also demonstrate that our AuNP-CTG based probing system could transfect without using transfection reagent and detect target CAG repeat sequences in HeLa cells with dramatic changes in fluorescence. This AuNP-CTG based probing system could also be used, in conjunction with the CAG repeat RCA system, to detect target DNA. This system was so sensitive to the target DNA that it could detect even picomolar amounts with amplification of the fluorescence signal. Furthermore, we have used our gold-based CAG probing system for the detection of RNA CAG repeat sequences.  相似文献   

9.
A bead-based assay was developed for highly sensitive single molecule DNA detection. Rolling circle amplification (RCA), an isothermal amplification technique that creates tandem repeated sequences, was used in combination with a fluorescent complementary DNA to create dense clusters of fluorescence. These clusters, each corresponding to a single target molecule, can be detected unambiguously due to their high signal/noise ratios. The limit of detection of this assay is approximately 1 amol. This simple single molecule assay allows high detection sensitivity without the use of complex equipment.  相似文献   

10.
滚环扩增技术(RCA)是近年来发展起来的一种新型的核酸扩增技术.该技术是基于连接酶连接、引物延伸、与链置换扩增反应的一种等温核酸扩增方法.在恒温的条件下,可以产生大量的与环型探针互补的重复序列.与传统的核酸扩增方法相比,它具有扩增条件简单,特异性高,能在恒温条件下进行等特点.滚环扩增技术结合荧光、电化学、电化学发光等检...  相似文献   

11.
Hou J  Liu X  Wang J  Liu J  Duan T 《Analytical biochemistry》2007,371(2):162-166
This article describes a new assay for isothermal enhancement of fluorescence intensity. The assay is based on the cleavage of duplexes formed by the chimeric DNA-rN(1)-DNA molecular beacon (cMB) and target DNA with Chlamydia pneumoniae RNase HII (CpRNase HII). The loop sequence of the cMB, which was designed according to the target sequence, contains a single ribonucleotide. The combination of CpRNase HII cleavage and cMB (RHMB) permitted a 90-fold increase in fluorescence intensity change compared with the hybridization reaction in the presence of the same amount of target DNA. These results indicate that the RHMB assay can enhance the fluorescence signal in real-time monitoring of the target DNA.  相似文献   

12.
滚环扩增是近年来发展起来的一种恒温核酸扩增方法。这种方法不仅可以直接扩增DNA和RNA,还可以实现对靶核酸的信号放大,灵敏度达到一个拷贝的核酸分子,因此,RCA技术在全基因组扩增、单核苷酸多态性、DNA芯片、蛋白质芯片等方面检测中具有很大的应用价值和潜力。  相似文献   

13.
14.
滚环DNA扩增的原理、应用和展望   总被引:2,自引:0,他引:2  
滚环DNA扩增 (rollingcircleDNAamplification ,RCA)是一种等温信号扩增方法 ,其线性扩增倍数为 1 0 5,指数化扩增能力大于 109,产生的扩增产物连接在固相支持物 (如玻片、微孔板等 )表面的DNA引物或抗体上。RCA是一种适合在芯片上 (on chip)进行信号扩增的新技术 ,它既能提供研究分析的敏感性和特异性 ,又能保持立体分析的多元性。RCA亦是一种痕量的分子检测方法 ,可用于极其微量的生物大分子和生物标志的检测与研究  相似文献   

15.
A novel cascade fluorescence signal amplification strategy based on the rolling circle amplification (RCA)-aided assembly of fluorescent DNA nanotags as fluorescent labels and multiplex binding of the biotin-streptavidin system was proposed for detection of protein target at ultralow concentration. In the strategy, fluorescent DNA nanotags are prepared relying on intercalating dye arrays assembled on nanostructured DNA templates by intercalation between base pairs. The RCA product containing tandem-repeat sequences could serve as an excellent template for periodic assembly of fluorescent DNA nanotags, which were presented per protein recognition event to numerous fluorescent DNA nanotags for assay readout. Both the RCA and the multiplex binding system showed remarkable amplification efficiency, very little nonspecific adsorption, and low background signal. Using human IgG as a model protein, the designed strategy was successfully demonstrated for the ultrasensitive detection of protein target. The results revealed that the strategy exhibited a dynamic response to human IgG over a three-decade concentration range from 1.0 pM to 1.0 fM with a limit of detection as low as 0.9 fM. By comparison with the assay of multiple labeling antibodies with the dye/DNA conjugate, the limit of detection was improved by 4 orders. The designed signal amplification strategy would hold great promise as a powerful tool to be applied for the ultrasensitive detection of target protein in immunoassay.  相似文献   

16.
17.
The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with phi29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 x 10(4)-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information.  相似文献   

18.
Protein detection via direct enzymatic amplification of short DNA aptamers   总被引:1,自引:1,他引:0  
Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Here we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. Because both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 microM to 10 pM).  相似文献   

19.
A conceptually new technique for fast DNA detection has been developed. Here, we report a fast and sensitive online fluorescence resonance energy transfer (FRET) detection technique for label-free target DNA. This method is based on changes in the FRET signal resulting from the sequence-specific hybridization between two fluorescently labelled nucleic acid probes and target DNA in a PDMS microfluidic channel. Confocal laser-induced microscopy has been used for the detection of fluorescence signal changes. In the present study, DNA hybridizations could be detected without PCR amplification because the sensitivity of confocal laser-induced fluorescence detection is very high. Two probe DNA oligomers (5'-CTGAT TAGAG AGAGAA-TAMRA-3' and 5'-TET-ATGTC TGAGC TGCAGG-3') and target DNA (3'-GACTA ATCTC TCTCT TACAG GCACT ACAGA CTCGA CGTCC-5') were introduced into the channel by a microsyringe pump, and they were efficiently mixed by passing through the alligator teeth-shaped PDMS microfluidic channel. Here, the nucleic acid probes were terminally labelled with the fluorescent dyes, tetrafluororescein (TET) and tetramethyl-6-carboxyrhodamine (TAMRA), respectively. According to our confocal fluorescence measurements, the limit of detection of the target DNA is estimated to be 1.0 x 10(-6) to 1.0 x 10(-7)M. Our result demonstrates that this analytical technique is a promising diagnostic tool that can be applied to the real-time analysis of DNA targets in the solution phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号