首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The common soil inhabiting nematophagous fungus Paecilomyces lilacinus (Thom) Samson and the nematode trapping fungus Monacrosporium lysipagum (Drechsler) Subram were assayed for their ability to reduce the populations of three economically important plant-parasitic nematodes in pot trials. The fungi were tested individually and in combination against the root-knot nematode Meloidogyne javanica (Treub) Chitwood, cereal cyst nematode Heterodera avenae Wollenweber, or burrowing nematode Radopholus similis (Cobb) Thorne on tomato, barley and tissue cultured banana plants, respectively. In all cases, nematode populations were controlled substantially by both individual and combined applications of the fungi. Combined application of P. lilacinus and M. lysipagum reduced 62% of galls and 94% of M.␣javanica juveniles on tomato when compared to the experiment with no fungi added. Sixty five percent of H. avenae cysts were reduced on barley by combined application of fungi. Control of R. similis on banana, both in the roots and in the soil, was greatest when M. lysipagum was applied alone (86%) or in combination with P. lilacinus (96%), using a strategy where the fungi were inoculated twice in 18 weeks growth period. Overall, combined application of P. lilacinus and M. lysipagum was the most effective treatment in controlling nematode populations, although in some cases M. lysipagum alone was as effective as the combined application of fungi, particularly against M. javanica.  相似文献   

2.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

3.
The influence of different application rates of the plant growth-promoting rhizobacterium, Pseudomonas aeruginosa, population densities of the root-knot nematode, Meloidogyne javanica, moisture and other plant-associated bacteria in the suppression of root rot–root knot disease complex of tomato are described. The impact of these factors on bacterial rhizosphere and inner root and shoot establishment are also presented. The highest inoculum level of P. aeruginosa (7.4 × 108 cfu ml–1) in the presence of the lowest population density of M. javanica (500 J2/plant) caused the greatest reduction in gall formation due to M. javanica. The number of root–knot nematodes recovered from soil and roots treated with P. aeruginosa were also significantly reduced. Root infection caused by the soilborne root-infecting fungi Fusarium oxysporum, F. solani and Rhizoctonia solani was also effectively suppressed following application of P. aeruginosa. A P. aeruginosa-Bacillus subtilis treatment was the most effective in the suppression of root-rot disease complex with enhancement of plant growth. Biocontrol and growth promoting potential of the bacterium was enhanced when soil was kept at 50% or 75% moisture holding capacity, whereas a 25% MHC reduced bacterial efficacy. Rhizosphere population of P. aeruginosa declined drastically in P. aeruginosa-Bradyrhizobium japonicum treatments. Rhizosphere colonisation by P. aeruginosa seems to be governed by two factors: Initial inoculum size of the bacterium and severity of the root-knot disease. Endoroot and endoshoot colonisation of the bacterium was dependent on degree of root-colonisation by Fusarium oxysporum. An inoculum level 2.5 × 108 cfu/ml of P. aeruginosa was optimal for the enhancement of plant growth, whereas inoculum below this level reduced plant growth.  相似文献   

4.
The effect of four opportunistic fungi viz., Paecilomyces lilacinus, Cladosporium oxysporum, Gliocladium virens and Talaromyces flavus on the life cycle of the root-knot nematode, Meloidogyne javanica, on brinjal was evaluated under glasshouse conditions. The results revealed that these fungi affected the penetration and development of M. javanica. The life cycle of M. javanica was delayed by 10, 7, 4 and 2 days in the presence of P. lilacinus, C. oxysporum, G. virens and T. flavus respectively. Fecundity, number of eggs per eggmass and number of larvae was also reduced in the presence of these opportunistic fungi. However, the number of males increased in the presence of opportunistic fungi.  相似文献   

5.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   

6.
Studying the mode of infection of a biocontrol agent is important in order to assess its efficiency. The mode and severity of infection of nematodes by a soil saprophyte Paecilomyces lilacinus (Thom) Samson and a knob-producing nematode trapping fungus Monacrosporium lysipagum (Drechsler) Subram were studied under laboratory conditions using microscopy. Infection of stationary stages of nematodes by P. lilacinus was studied with three plant-parasitic nematodes Meloidogyne javanica (Treub) Chitwood, Heterodera avenae Wollenweber and Radopholus similis (Cobb) Thorne. Paecilomyces lilacinus infected eggs, juveniles and females of M. javanica by direct hyphal penetration. The early developed eggs were more susceptible than the eggs containing fully developed juveniles. As observed by transmission electron microscopy, fungal hypha penetrated the M. javanica female cuticle directly. Paecilomyces lilacinus also infected immature cysts of H. avenae including eggs in the cysts and the eggs of R. similis. Trapping and subsequent killing of mobile stages of nematodes by M. lysipagum were studied with the above three nematodes. In addition, plant-parasitic nematodes Pratylenchus neglectus (Rensch) Chitwood and Oteifa and Ditylenchus dipsaci (Kuhn) Filipjev were tested with M. lysipagum. This fungus was shown to infect mobile stages of all the plant-parasitic nematodes. In general, juveniles except those of P. neglectus, were more susceptible to the attack than adults.  相似文献   

7.
The root-knot nematode Meloidogyne spp. includes important plant pathogens worldwide. This study has considered nematode Meloidogyne javanica second stage larvae activity in the extracts of Pseudomonas fluorescens strains UTPF5 and cytotoxic effect of the strain on the nematode. The movement of second stage larvae of nematodes in water agar medium at four concentrations of bacterial extracts and second stage larvae mortality rate of hatching nematode and bacterial strains in vitro were affected. Different concentrates of the strain UTPF5 effect nematode larvae movement and disposal of the same. Bacterial extraction kills almost 100% of the larvae hatching after 24?h and a complete ban on egg hatch of biocontrol nematodes and nematode indicated that root-knot nematode larvae movement on the right attract the bacteria P. fluorescens to extract in the first place.  相似文献   

8.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

9.
Investigations were carried out to evaluate the efficacy of biocontrol agents (Paecilomyces lilacinus and Cladosporium oxysporum) and/or oil cakes of castor, linseed, groundnut, mahua and neem in the management of root knot nematode, Meloidogyne javanica infecting eggplant under glasshouse conditions. All the treatments effectively suppressed the nematode population and kept the infection at significantly low level. Individual treatment of P. lilacinus was more effective than C. oxysporum in controlling M. javanica, whereas among oil cakes individual treatment of neem was more effective in the management of M. javanica followed by linseed cake, castor cake, groundnut cake and mahua cake. However, the efficacy of biocontrol agents increased in the presence of oil cakes. The highest improvement in plant growth and best protection against M. javanica was obtained by the integration of P. lilacinus with groundnut cake followed by neem cake, linseed cake, castor cake and mahua cake. On the other hand the integration of C. oxysporum with neem cake followed by groundnut cake, linseed cake, castor cake and mahua cake gave the best results in managing M. javanica on eggplant.  相似文献   

10.
The efficacy of the nematode parasite Paecilomyces lilacinus, alone and in combination with phenamiphos and ethoprop, for controlling the root-knot nematode Meloidogyne javanica on tobacco and the ability of this fungus to colonize in soil under field conditions were evaluated for 2 years in microplots. Combinations and individual treatments of the fungus grown on autoclaved wheat seed, M. javanica eggs (76,000 per plot), and nematicides were applied to specified microplots at the time of transplanting tobacco the first year. Vetch was planted as a winter cover crop, and the fungus and nematicides were applied again the second year to specified plots at transplanting time. The fungus did not control the nematode in either year of these experiments. The average root-gall index (0 = no visible galls and 5 = > 100 galls per root system) ranged from 2.7 to 3.9 the first year and from 4.3 to 5.0 the second in nematode-infested plots treated with nematicides. Plants with M. javanica alone or in combination with P. lilacinus had galling indices of 5.0 both years; the latter produced lower yields than all other treatments during both years of the study. Nevertheless, the average soil population densities of P. lilacinus remained high, ranging from 1.2 to 1.3 × 106 propagules/g soil 1 week after the initial inoculation and from 1.6 to 2.3 × 104 propagules/g soil at harvest the second year. At harvest the second year the density of fungal propagules was greatest at the depth of inoculation, 15 cm, and rapidly decreased below this level.  相似文献   

11.
A serine protease and an enzyme preparation consisting of six chitinases, previously semi-purified from a liquid culture of Paecilomyces lilacinus strain 251, were applied to Meloidogyne javanica eggs to study the effect of the enzymes on eggshell structures. Transmission electron microscopic studies revealed that the protease and chitinases drastically altered the eggshell structures when applied individually or in combination. In the protease-treated eggs, the lipid layer disappeared and the chitin layer was thinner than in the control. The eggs treated with chitinases displayed large vacuoles in the chitin layer, and the vitelline layer was split and had lost its integrity. The major changes in the eggshell structures occurred by the combined effect of P. lilacinus protease and chitinases. The lipid layer was destroyed; the chitin layer hydrolyzed and the vitelline layer had lost integrity. The effect of P. lilacinus protease and chitinase enzymes on the hatching of M. javanica juveniles was also compared with a commercially available bacterial chitinase. The P. lilacinus protease and chitinase enzymes, either individually or in combination, reduced hatching of M. javanica juveniles whereas a commercial bacterial chitinase had an enhancing effect. Some juveniles hatched when the eggs were exposed to a fungal protease and chitinase mixture. We also established that P. lilacinus chitinases retained their activity in the presence of endogenous protease activity.  相似文献   

12.
The present study was carried out in vitro to determine the efficacy of indigenous fungi isolated from egg masses of root-knot nematode, Meloidogyne incognita on egg parasitism, egg hatching, mobility and mortality against root-knot nematode, M. incognita. The tested fungi were Acremonium strictum, Aspergillus terreus, A. nidulans, A. niger, Chetomium aubense, Chladosporium oxysporum, Fusarium chlamydosporium, F. dimarum, F. oxysporum, F. solani, Paecilomyces lilacinus, Pochonia chlamydosporia, Trichoderma viride and T. harzianum. All tested fungi showed varied effects against the nematodes. Culture filtrates of A. strictum was very effective against the nematode in regards to egg parasitism (53%), egg hatching inhibition (86%) and mortality (68%) compared to controls. A. strictum was found to have an advantage over P. lilacinus, P. chlamydosporia, T. viride and T. harzianum in that it caused greater mortality of the second stage juveniles (J2). A. terreus did not show egg parasitism but was found to be highly toxic against second stage juveniles (J2) causing high mortality (around 68%). Thus, A. strictum and A. terreus showed good biocontrol potential against root-knot nematode, M. incognita under in vitro conditions.  相似文献   

13.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

14.
Peanut fields in four governorates of Egypt were surveyed to identify species of Meloidogyne present. Fourteen populations obtained from peanut roots were all identified as M. javanica based on perineal patterns, stylet and body lengths of second-stage juveniles, esterase phenotypes, and restriction fragment length polymorphisms of mtDNA. Three of 14 populations, all from contiguous fields in the Behara governorate, had individuals with a unique two-isozyme esterase phenotype. All populations of M. javanica tested on peanut had levels of reproduction on the M. arenaria-susceptible peanut cultivar Florunner that were not different from M. arenaria (P = 0.05), and had lower levels of reproduction on the M. arenaria-resistant genotype TxAG-7 than on Florunner (P = 0.05). Reproduction of the five Egyptian populations of M. javanica tested was lower on root-knot nematode resistant tomato cultivars Better Boy and Celebrity than on the root-knot nematode susceptible cultivar Rutgers (P = 0.05). These data are evidence that some populations of M. javanica are parasitic on peanut and that the peanut and tomato genotypes resistant to M. arenaria are also resistant to these populations of M. javanica.  相似文献   

15.
Fungi were isolated from Meloidogyne spp. eggs and females on 102 field-collected root samples in China. Of the 235 fungi isolated (representing 18 genera and 26 species), the predominant fungi were Fusarium spp. (42.1% of the isolates collected), Fusarium oxysporum (13.2%), Paecilomyces lilacinus (12.8%), and Pochonia chlamydosporia (8.5%). The isolates were screened for their ability to parasitise Meloidogyne incognita eggs in 24-well tissue culture plates in two different tests. The percentage of eggs parasitised by the fungi, the numbers of unhatched eggs and alive and dead juveniles were counted at 4 and 7 days after inoculation. The most promising fungi included five Paecilomyces isolates, 10 Fusarium isolates, 10 Pochonia isolates and one Acremonium isolate in test 1 or test 2. Paecilomyces lilacinus YES-2 and P. chlamydosporia HDZ-9 selected from the in vitro tests were formulated in alginate pellets and evaluated for M. incognita control on tomato in a greenhouse by adding them into a soil with sand mixture at rates of 0.2, 0.4, 0.8 and 1.6% (w/w). P. lilacinus pellets at the highest rate (1.6%) reduced root galling by 66.7%. P. chlamydosporia pellets at the highest rate reduced the final nematode density by 90%. The results indicate that P. lilacinus and P. chlamydosporia as pellet formulation can effectively control root-knot nematodes.  相似文献   

16.
The potential of 13 Paecilomyces lilacinus isolates from various geographic regions as biocontrol agents against Meloidogyne incognita, the effects of temperature on their growth, and the characterization of the impact of soil temperature on their efficacy for controlling this nematode were investigated. Maximum fungal growth, as determined by dry weight of the mycelium, occurred from 24 to 30 C; least growth was at 12 and 36 C. The best control of M. incognita was provided by an isolate from Peru or a mixture of isolates of P. lilacinus. As soil temperatures increased from 16 to 28 C, both root-knot damage caused by M. incognita and percentage of egg masses infected by P. lilacinus increased. The greatest residual P. lilacinus activity on M. incognita was attained with a mixture of fungal isolates. These isolates effected lower root-galling and necrosis, egg development, and enhanced shoot growth compared with plants inoculated with M. incognita alone.  相似文献   

17.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

18.
Culture filtrates of Beauveria bassiana at different concentrations were evaluated for nematicidal activity against the northern root knot nematode (Meloidogyne hapla); bioassays included egg hatching, mortality and infectivity on tomato plants in pots under glasshouse conditions. The percentage mortality and inhibition of hatching of root-knot nematode were directly proportional to the concentration of culture filtrates of B. bassiana. Soil drenching with culture filtrate of B. bassiana significantly reduced nematode population densities in soil and in the roots and subsequent gall formation and egg-mass production by M. hapla under glasshouse conditions.  相似文献   

19.
The penetration of second stage juveniles of Meloidogyne javanica started within 12 hours after inoculation and the rate of penetration gradually increased with the passage of time up to the fifth day in the plants inoculated with root-knot nematode alone and up to the sixth day when plants were infected with root-knot nematode and root-rot fungus. Mostly, the penetration of second stage juveniles of Meloidogyne javanica took place in the meristematic region but in some cases the juveniles also penetrated into the root tips and oriented themselves near the stellar region almost parallel to the longitudinal axis of the roots. The life cycle of Meloidogyne javanica on balsam was completed within 25 days, whereas the duration of the life cycle and fecundity of females was adversely affected in the presence of fungus (Macrophomina phaseolina) and it took about 33 days to complete the life cycle, i.e. the presence of Macrophomina phaseolina delayed the life cycle of the root-knot nematode (Meloidogyne javanica) by eight days.  相似文献   

20.
Shahid Shaukat  S.  Siddiqui  Imran A.  Khan  Ghazala H.  Zaki  M.J. 《Plant and Soil》2002,245(2):239-247
Argemone mexicana L. (Papaveraceae), a tropical annual weed, is phytotoxic to many crop species. This study was designed to examine the allelochemical and nematicidal potential of A. mexicana and to better understand the role of this weed in the ecosystem. A methanol-soluble extract of the leaf material caused greater juvenile mortality of Meloidogyne javanica than did ethyl acetate or hexane extracts indicating the polar nature of the toxins. Decomposing tissues of A. mexicana in soil at 50 g kg–1 were highly deleterious causing 80% mortality of tomato plants. At 10 g kg–1 plant growth was enhanced, while at 30 g kg–1 plant growth was substantially retarded. M. javanica population densities in the rhizosphere and in roots, and gall formation were significantly suppressed when 10, 30 or 50 g kg–1 A. mexicana was allowed to decompose in the soil. To establish whether decomposition was necessary to produce phytotoxic symptoms, or whether the shoot extract alone could interfere with plant growth, an aqueous shoot extract was applied to soil. Whereas a 50% extract promoted plant growth, a 100% (100 g/500 mL distilled water) concentration significantly reduced plant height, and fresh weights of shoot and root. In general, decomposing plant material caused greater phytotoxicity compared to the aqueous extract. Addition of N as NH4NO3 partially alleviated the phytotoxic action of A. mexicana,and also reduced severity of root-knot disease. Adding Pseudomonas aeruginosa to soil amended with A. mexicana resulted in decreased density of M. javanicain the rhizosphere and in tomato roots, suppressed galling rates and enhanced plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号