首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carnation (Dianthus caryophyllus L.) is one of the most important ornamental plants in the world. Though morphological modification of carnation is very important to its commercial value, there have been no relevant reports until now. PttKN1 (Populus tremula × Tremuoides knotted1), isolated from the vascular cambial region of hybrid aspen, is a novel member of KNOX gene family. In this paper, we transformed 35S:PttKN1 to carnation via Agrobacterium tumefaciens. All primary transformants subsequently obtained were placed into phenotypic categories and self-pollinated. A total of 32 T0 progeny with aberrant phenotypes were obtained. PCR assay proved the validity of these transgenic plants. Phenotypes of 32 35S:PttKN1 plants were distinct from those of wild-type plants, including: (1) modification of phyllotaxis (15/32): wild-type carnation was with typical opposite phyllotaxis, while transgenic plants displayed tricussate whorled and multiple-cussate whorled phyllotaxis. Irregular modification of phyllotaxis was also observed; (2) modification of stem (9/32): wild-type stems were round; however, some transgenic plants exhibited much thicker and flatter stem; (3) the whole transgenic plants of carnation (8/32) became dwarf. These morphological modifications of carnation indicate that we have successfully attained some novel lines of carnation. These lines can have potential practical applications. In conclusion, the selection of stably genetic lines is discussed.  相似文献   

2.
3.
We have established a shoot regeneration system and genetic transformation of cockscomb (Celosia cristata and Celosia plumosus). The best results in terms of frequency of shoot regeneration and number of shoot buds per explant are observed on media supplemented with 0.5 mg l−1 6-BA (for explants of apical meristems of C. cristata) or 2.0 mg l−1 6-BA, 0.5  mg l−1 NAA and 0.5  mg l−1 IAA (for hypocotyls explants of C. plumosus). We use apical meristems of C. cristata and hypocotyls of C. plumosus as the starting material for transformation. A novel KNOTTED1-like homeobox1 (KNOX), PttKN1 (Populus tremula × P. tremuoides knotted1) isolated from the vascular cambial region of hybrid aspen, is introduced into cockscomb by Agrobacterium. A series of novel phenotypes are obtained from the transgenic cockscomb plants, including lobed or rumpled leaves, partite leaves and two or three leaves developed on the same petiole, on the basis of their leaf phenotypes. Transformants are selected by different concentrations of kanamycin. Transformants are confirmed by PCR of the NptII gene and PCR or RT-PCR of PttKN1 gene. Furthermore, RT-PCR shows that 35S:: PttKN1 RNA levels do not correlate with phenotypic severity. It is discussed that our results bring elements on possible function of PttKN1 gene. To our knowledge, genetic transformation of cockscomb is first reported.  相似文献   

4.
The structure of the plant inflorescence and flower is an important agronomic and ornamental trait studied for its potential economic applications. In particular, the capacity to modify flower size has always been a breeder’s goal. Genetic and molecular studies have shown that the Zea mays gene Ramosa1 (Ra1) is involved in inflorescence branching regulation. In fact the ra1 loss of function mutation causes extra branching of the inflorescence. In this work we suggest a possible utilization of the Ramosa1 maize gene as a tool to modify inflorescence architecture and flower size in transgenic plants. In fact overexpression of this gene in Arabidopsis plants promotes an increase in reproductive organ size. Pollen, seeds, cotyledons, leaves and roots are also larger than those of the wild type. Analysis of organs from transformants showed that cell expansion was increased without apparently affecting cell division. These results suggest that the RA1 protein is able to up-regulate cell expansion in all organs of Arabidopsis plants.  相似文献   

5.
ALBINO3, a homologue of PPF1 in Arabidopsis, encodes a chloroplast protein, and is essential for chloroplast differentiation. In the present study, ALBINO3(−) transgenic plants exhibited a significant decrease in both the number of rosette leaves at bolting and the days before bolting, suggesting the important roles of ALBINO3 in regulating flowering during non-inductive short-day photoperiods. ALBINO3 mRNA was apparently accumulated in shoot apical meristem and floral meristems around the shoot apical meristem in wild-type plants. ALBINO3 might be predominantly involved in inducing the floral repression pathway by activating the expression of TFL1, and by suppressing the expression of LFY, respectively, in the shoot apical meristem. Moreover, the function of ALBINO3 in regulating flowering transition depended on the expression of CO and GA1, because ALBINO3 might function in the downstream integration of the photoperiod-dependent and the photoperiod-independent pathways. These results suggest that ALBINO3 may have an important integrative function in the flowering process in Arabidopsis.  相似文献   

6.
Cotton (Gossypium hirsutum L., var. Coker 312) hypocotyl explants were transformed with three strains of Agrobacterium tumefaciens, LBA4404, EHA101 and C58, each harboring the recombinant binary vector pBI121 containing the chi gene insert and neomycin phosphotransferase (nptII) gene, as selectable marker. Inoculated tissue sections were placed onto cotton co-cultivation medium. Transformed calli were selected on MS medium containing 50 mg l−1 kanamycin and 200 mg l−1 cepotaxime. Putative calli were subsequently regenerated into cotton plantlets expressing both the kanamycin resistance gene and βglucuronidase (gus) as a reporter gene. Polymerase chain reaction was used to confirm the integration of chi and nptII transgenes in the T1 plants genome. Integration of chi gene into the genome of putative transgenic was further confirmed by Southern blot analysis. ‘Western’ immunoblot analysis of leaves isolated from T0 transformants and progeny plants (T1) revealed the presence of an immunoreactive band with MW of approximately 31 kDa in transgenic cotton lines using anti-chitinase-I polyclonal anti-serum. Untransformed control and one transgenic line did not show such an immunoreactive band. Chitinase specific activity in leaf tissues of transgenic lines was several folds greater than that of untransformed cotton. Crude leaf extracts from transgenic lines showed in vitro inhibitory activity against Verticillium dahliae.Transgenic plants currently growing in a greenhouse and will be bioassayed for improved resistance against V. dahlia the causal against of verticilliosis in cotton.  相似文献   

7.
8.
The objective of this research was to establish an efficient system of genetic transformation and plant regeneration from hairy roots by infecting the leaf sections and stem segments of in vitro Rehmannia glutinosa Libosch. f. hueichingensis Hsiao plantlets. Hairy roots were induced from them after co-culturing with Agrobacterium rhizogenes strain 15834 at a frequency of 32 and 29.4%, respectively. The calluses were induced from hairy roots on half-strength Murashige and Skoog medium containing 0.2 mg/l kinetin and 3.0 mg/l benzyladenine at a frequency of 100%, from which transgenic shoots and plantlets were developed. Transgenic plantlets did not have differences in morphology except the shortened internodes and an increase in adventitious root formation compared to wild-type plants. PCR and Southern-blot analyses confirmed that rolB gene of TL-DNA was inserted in the genome of transformed hairy roots and plantlets. RT-PCR analysis and opine paper electrophoresis revealed that rolB gene was expressed in the transformed hairy roots and plantlets. Conclusively, transgenic hairy roots and transgenic plants of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao were developed for the first time. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 247–255.  相似文献   

9.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

10.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

11.
Plant diseases and insect pests are serious threat to the growth and yield of oilseed rape. In this study, a binary vector carrying sporamin and chitinase PjChi-1 genes in tandem was introduced into Brassica napus cv. ZS 758 via Agrobacterium tumefaciens for dual resistance against disease and insect attack. Thirty-two regenerated plantlets exhibiting hygromycin resistance were selected following Agrobacterium-mediated transformation of 600 leaf petiole explants. Of these, 27 transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR) with 4.5% transformation efficiency. Eight plantlets were randomly selected for further confirmation by Southern and northern blot hybridization analyses. Four plants carried single copy of the transgenes, while the remaining four plants carried either two or three copies of the transgenes. Moreover, expression of the sporamin transgene was detected by northern blot hybridization in transgenic lines, but not in wild-type plants. These eight T0 plants were grown in vitro, and inoculated with the Lepidoptera larvae of Plutella xylostella and with spores of the fungal pathogen of Sclerotinia sclerotiorum. Transgenic plants exhibited high levels of resistance to P. xylostella and S. sclerotiorum when compared to untransformed wild-type plants. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Therefore, these transgenic lines demonstrate a promising potential for variety development of oilseed rape lines with enhanced resistance against both P. xylostella and S. sclerotiorum.  相似文献   

12.
13.
Mutant Arabidopsis thaliana taeniata (tae) plants are characterized by an altered morphology of leaves and the inflorescence. At the beginning of flowering, the inflorescence produces fertile flowers morphologically intermediate between a shoot and a flower. The recessive mutation tae also causes the formation of ectopic meristems and shoot rosettes on leaves. The expressivity of the mutant characters depend on the temperature and photoperiod. Analysis of the activity of KNOX class I genes in the leaves of the tae mutant has demonstrated the expression of genes KNAT2 and STM and an increase in the expression of genes KNAT1 and KNAT6 compared to wild-type leaves. These data indicate that the TAE gene negatively regulates the KNAT1, KNAT2, KNAT6, and STM genes.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1068–1074.Original Russian Text Copyright © 2005 by Lebedeva, Ezhova, Melzer.  相似文献   

14.
A novel stilbene synthase gene (STS), cloned from Chinese wild Vitis pseudoreticulata (W. T. Wang) and responsible for synthesis of the phytoalexin resveratrol in grapevine, was successfully transferred into V. vinifera L. cv. Thompson Seedless via Agrobacterium tumefaciens-mediated transformation. Using transformation procedures developed in the present study, 72% GFP-positive germinated embryos were produced with about 38% of transformed embryos regenerated into normal plantlets. Integration of the STS gene into the transgenic plants was verified by PCR and Southern blot analysis. Expression of the STS gene was detected by high performance liquid chromatography (HPLC), which showed that the resveratrol concentration in the transgenic plants was 5.5 times higher than that in non-transformed control plants. Chaohong Fan and Ni Pu contributed equally to this work.  相似文献   

15.
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress, but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to 25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine.  相似文献   

16.
17.
Summary The generation of transgenic Cucumis sativus cv. Greenlong plants resistant to phosphinothricin (PPT) was obtained using Agrobacterium tumefaciens-mediated gene transfer. The protocol relied on the regeneration of shoots from cotyledon explants. Transformed shoots were obtained on Murashige and Skoog medium supplemented with 4.4 μM 6-benzylaminopurine 3.8 μM abscisic acid, 108.5 μM adenine sulfate, and 2 mg l−1 phosphinothricin. Cotyledons were inoculated with the strain EHA105 harboring the neomycin phosphotransferase II (npt II), and phosphinothricin resistance (bar) genes conferring resistance to kanamycin and PPT. Transformants were selected by using increasing concentrations of PPT (2–6 mg l−1). Elongation and rooting of putative transformants were performed on PPT-containing (2 mg l−1) medium with 1.4 μM gibberellic acid and 4.9 μM indolebutyric acid, respectively. Putative transformants were confirmed for transgene insertion through PCR and Southern analysis. Expression of the bar gene in transformed plants was demonstrated using a leaf painting test with the herbicide Basta. Pre-culture of explants followed by pricking, addition of 50 μM acetosyringone during infection, and selection using PPT rather than kanamycin were found to enhance transformation frequency as evidenced by transient β-glucuronidase assay. Out of 431 co-cultivated explants, 7.2% produced shoots that rooted and grew on PPT, and five different plants (1.1%) were demonstrated to be transgenic following Southern hybridization.  相似文献   

18.
The enzyme fatty acid desaturase 2 (FAD2) transforms oleic acid (C18:1) to linoleic acid (C18:2) in plants and as such is involved in fatty acid synthesis. It is also involved in plant development and self-defense, such as seed germination, leaf expansion and cold resistance. We have cloned the full coding region of the Brassica napus FAD2 gene and ectopically expressed it in B. napus expressing low levels of FAD2. Overexpression of FAD2 under the control of the CaMV 35S promoter resulted in an up-regulated FAD2 mRNA level in B. napus as expected. Further analysis revealed that the FAD2 transgenic lines varied greatly in terms of their physiological characteristics, such as enhanced seed germination and increased hypocotyl length, compared to non-transgenic plants, suggesting that up-regulated FAD2 can promote seed germination and hypocotyl elongation in B. napus. Our results demonstrate the possible roles of FAD2 in plant development and also provide a platform for further analysis of fatty acid synthesis in plants.  相似文献   

19.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

20.
Passiflora alata in vitro organogenesis was studied based on explant type, culture medium composition, and incubation conditions. The results indicated that the morphogenic process occurred more efficiently when hypocotyl segment-derived explants were cultured in media supplemented with cytokinin and AgNO3 incubated under a 16-h photoperiod. The shoot bud elongation and plant development were obtained by transferring the material to MSM culture medium supplemented with GA3 and incubated in flasks with vented lids. Histological analyses of the process revealed that the difficulties in obtaining plants could be related to the development of protuberances and leaf primordia structures, which did not contain shoot apical meristem. Roots developed easily by transferring elongated shoots to 1/2 MSM culture medium. Plant acclimatization occurred successfully, and somaclonal variation was not visually detected. The efficiency of this organogenesis protocol will be evaluated for genetic transformation of this species to obtain transgenic plants expressing genes that can influence the resistance to Cowpea aphid borne mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号