首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal behavior of luciferase on nanofabricated hydrophilic Si surface was investigated using molecular dynamics simulations. At high temperature, LUC_CHANGES (structural changes in the active site of luciferase) were smaller on the nanofabricated hydrophilic Si surface than on a non-nanofabricated hydrophilic Si surface, although LUC_CHANGES were slightly larger on the nanofabricated hydrophilic Si surface than on a non-nanofabricated hydrophobic Si surface. At room temperature, LUC_CHANGES were smaller on the nanofabricated hydrophilic Si surface than on a non-nanofabricated and wet-treated Si surface. Thus, nanofabricated hydrophilic Si surface would be preferable for practical applications.  相似文献   

2.
Silicon uptake by terrestrial plants impacts the Si land-ocean fluxes, therefore inducing significant modifications for biogeochemical cycle of Si. Understanding the mechanisms that control Si uptakes by forest vegetation is of great interest for the study of the global Si cycle as the world’s total forest area corresponds to about 30% of the land area. Our study compares Si uptake in controlled conditions by two coniferous species (Pseudotsuga menziensii and Pinus nigra) exhibiting contrasting Si uptake in the field. For this purpose, seedlings were grown for 11 weeks under controlled conditions in hydroponics with different Si concentrations (0.2 to 1.6 mM) in nutrient solutions. The Si concentrations were greater in Douglas fir leaves as compared with Black pine leaves and increased, depending on the Si concentration in the nutrient solution. According to mass balance, Si absorption seems to have been driven by passive Si transport at 0.2 mM Si (realistic concentration for forest soil solutions) and was rejective at higher Si concentrations in nutrient solution for both species. For this reason, we attributed the higher Si concentration in Douglas fir leaves to the greater cumulative transpiration of these seedlings. We suggest that contrasting transpiration rates may also play a key role in controlling Si accumulation in leaves at field scale.  相似文献   

3.
硅对菜心炭疽病发生、菜薹形成及硅吸收沉积的影响   总被引:2,自引:0,他引:2  
采用不同浓度硅(Si)对菜心进行处理, 研究了Si对菜心炭疽病发生、菜薹形成及Si吸收沉积的影响.结果表明:Si对菜心炭疽病的发生有明显的调控作用,并存在基因型差异;感病品种2.5 mmol·L-1和抗病品种0.5 mmol·L-1Si处理对炭疽病菌的抗性最强,病情指数最低,菜薹产量最高.Si对菜心品质也有明显影响,不同浓度Si处理可促进感病品种的叶绿素、粗纤维、Vc的合成,并诱导可溶性糖的生成,且叶绿素、粗纤维含量随Si处理浓度的提高而增加;抗病品种的叶绿素含量随Si处理浓度的增加明显增加,而Vc含量下降,Si对抗病品种的粗纤维、可溶性糖含量影响不显著;Si对两个品种菜薹的粗蛋白和可溶性蛋白质含量影响均不显著.施Si明显提高了菜心叶片Si的积累,且叶片的Si含量随着Si处理浓度的增加而显著提高;叶片组织沉积的Si粒大小不一,Si在叶片表皮组织呈不均匀分布.表明Si在菜心叶片中的积累可提高植株的抗病能力,但其积累量与植株的抗病能力不呈直线相关关系.  相似文献   

4.
There is mounting evidence silicon (Si) can alter plant nutrient dynamics and is an important functional trait in plant defence and plant–insect ecology. Despite this, there remains a paucity in our understanding of how Si‐driven changes in nutritional quality can impact herbivore performance across different plant species. We investigated how Si alters plant nutritional quality and the concomitant effects on the performance of the Australian native generalist herbivore Helicoverpa punctigera feeding on three economically significant plant species of varying Si‐uptake ability: Brassica napus (non‐Si accumulator), Cucumis sativus (intermediate Si accumulator) and Sorghum bicolor (high Si accumulator). Si supplementation reduced the nutritional quality of B. napus but increased phosphorus concentrations in S. bicolor. Si reduced herbivore performance in all host–plant species, which correlated directly with Si concentrations in Si‐accumulating host plants C. sativus and S. bicolor. However, on B. napus, Si affected herbivore performance indirectly by reducing nutritional quality (foliar carbon:nitrogen ratio and phosphorus concentration). This suggests Si availability can affect herbivore performance directly via Si concentration on Si‐accumulating hosts, and indirectly via nutritional quality in a non‐Si accumulator. The resistance‐enhancing effects of Si on multiple species offer opportunity for agriculture to utilise this abundant element in sustainable management practices.  相似文献   

5.
Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.  相似文献   

6.
The objective of this study was to assess the effect of different Cd and Si concentrations on the maize plants. The following Cd and/or Si treatments were used: 5 Cd; 10 Cd; 100 Cd; 5 Cd + 0.08 Si; 10 Cd + 0.08 Si; 100 Cd + 5 Si treatments (Cd concentration in μM, Si concentration in mM). The plant growth, photosynthetic pigments content, antioxidant enzymes activities (POX, SOD, CAT), Cd and Si accumulation, translocation and cell wall deposition of the maize plants was observed. Changes in the endodermal cell walls development and late metaxylem elements lignification due to Cd and/or Si treatment were also evaluated. The negative effect of Cd (5 and 10 μM) on the growth parameters was alleviated by Si at 0.08 mM. The positive effect of Si was not observed at higher Cd and Si concentrations. This indicates that the alleviating effect of Si on Cd toxicity depends on the Cd and Si concentrations. Plants responded to Cd toxicity by an increase of antioxidant enzyme activity. Silicon addition in Cd + Si treatment stimulated an increase in the activity of antioxidant enzymes in comparison with the Cd treatment. Chlorophyll and carotenoid content in the Cd treated plants was not significantly affected by Si. The young maize plants retained much more Cd in their roots as they translocated into the shoots. 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments correlated with an increase in Cd concentration in the roots and shoots, and in the cell walls. Silicon caused a slight decrease of the Cd translocation into the shoots in 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments. Negative correlation between the root Cd cell wall deposition and Cd translocation was observed. Cadmium and/or Si altered root anatomy. Cadmium enhanced suberin lamellae development and late metaxylem lignification; silicon in Cd + Si treatments accelerated suberin lamellae deposition and enhanced the tertiary endodermal cell walls formation in comparison with Cd treatments. Negative correlation between the endodermal cell walls development and Cd translocation was observed.  相似文献   

7.
A basic problem in silicon (Si) uptake studies in biology is the lack of an appropriate radioactive isotope. Radioactive germanium-68 ((68)Ge) has been used previously as a Si tracer in biological materials, but its suitability for the study of Si transport in higher plants is still untested. In this study, we investigated (68)Ge-traced Si uptake by four crop species differing widely in uptake capacity for Si, including rice (Oryza sativa), barley (Hordeum vulgare), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum). Maintenance of a (68)Ge:Si molar ratio that was similar in the plant tissues of all four plant species to that supplied in the nutrient solution over a wide range of Si concentrations demonstrated the absence of discrimination between (68)Ge and Si. Further, using the (68)Ge tracer, a typical Michaelis-Menten uptake kinetics for Si was found in rice, barley, and cucumber. Compared to rice, the relative proportion of root-to-shoot translocated Si was lower in barley and cucumber and especially in tomato (only 30%). Uptake and translocation of Si in rice, barley, and cucumber (Si accumulators) were strongly inhibited by 2,4-dinitrophenol and HgCl(2), but in tomato, as a Si-excluding species, both inhibitors produced the opposite effect. In conclusion, our results suggest the use of the (68)Ge tracer method as an appropriate choice for future studies of Si transport in plants. Our findings also indicate that the restriction of Si from symplast to apoplast in the cortex of Si excluders is a metabolically active process.  相似文献   

8.
We have investigated the influence of silicon on higher zinc concentration reducing the growth of aboveground parts by ca 50 % in young maize plants (hybrid Novania) grown in hydroponics. Eight different treatments were used: control, Zn (800 μM ZnSO4·7H2O), Si1/Si2.5/Si5 (1/2.5/5 mM Na2SiO7) and Zn+Si (combination of zinc and all silicon concentrations). The concentration of Zn and Si and their distribution in plants was determined. The growth parameters (length of primary seminal root, leaf area of first and second leaves, fresh and dry weight of below- and above-ground plant parts) of plants grown in various Zn+Si treatments were significantly decreased in comparison to all other treatments. Increasing concentration of Si in combination with Zn treatment and selected hybrid (Novania) resulted in increased physiological stress in comparison to Zn treatment. However, roots and shoots of all Zn+Si treated plants contained significantly lower amount of Zn than Zn treatment. The Si concentration in roots was the same in Si and Zn+Si plants. In general, higher amount of Si was observed in shoots than in roots of Si1- and Si2.5-treated plants and opposite was observed in Si5-treated plants. In spite of significantly decreased root and shoot accumulation of Zn in the presence of Si, no positive effect of Si on Zn toxicity in young maize plants under experimental conditions used in this work and used maize hybrid was observed.  相似文献   

9.
Spot blotch, caused by the fungus Bipolaris sorokiniana, is one of the most important diseases on wheat. The effects of silicon (Si) on this wheat disease were studied. Plants of wheat cultivars BR‐18 and BRS‐208 were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si in leaf tissue was significantly increased by 90.5% for the +Si treatment. There was no significant difference between Si treatments for calcium content, so variations in Si accounted for differences in the level of resistance to spot blotch. The incubation period was significantly increased by 40% for the +Si treatment. The area under spot blotch progress curve, number of lesions per cm2 of leaf area, and real disease severity significantly decreased by 62, 36 and 43.5% in +Si treatment. There was no significant effect of Si on lesion size. The role played by total soluble phenolics in the increased resistance to spot blotch of plants from both cultivars supplied with Si was not clear. Plants from cultivar BR‐18 supplied with Si showed the highest values for concentration of lignin‐thioglycolic acid derivatives during the most advanced stages of fungus infection. Chitinase activity was high at the most advanced stages of fungus infection on leaves from both cultivars supplied with Si and may have had an effect on fungus growth based on the reduction of the components of resistance evaluated. Peroxidase activity was found to be high only at 96 h after inoculation of both cultivars supplied with Si. Polyphenoloxidase activity had no apparent effect on resistance regardless of Si treatments. Results revealed that supplying Si to wheat plants can increase resistance against spot blotch.  相似文献   

10.
The silicic acid uptake kinetics of diatoms were studied to provide a mechanistic explanation for previous work demonstrating both nonsaturable and Michaelis-Menten-type saturable uptake. Using (68)Ge(OH)(4) as a radiotracer for Si(OH)(4), we showed a time-dependent transition from nonsaturable to saturable uptake kinetics in multiple diatom species. In cells grown under silicon (Si)-replete conditions, Si(OH)(4) uptake was initially nonsaturable but became saturable over time. Cells prestarved for Si for 24 h exhibited immediate saturable kinetics. Data suggest nonsaturability was due to surge uptake when intracellular Si pool capacity was high, and saturability occurred when equilibrium was achieved between pool capacity and cell wall silica incorporation. In Thalassiosira pseudonana at low Si(OH)(4) concentrations, uptake followed sigmoidal kinetics, indicating regulation by an allosteric mechanism. Competition of Si(OH)(4) uptake with Ge(OH)(4) suggested uptake at low Si(OH)(4) concentrations was mediated by Si transporters. At high Si(OH)(4), competition experiments and nonsaturability indicated uptake was not carrier mediated and occurred by diffusion. Zinc did not appear to be directly involved in Si(OH)(4) uptake, in contrast to a previous suggestion. A model for Si(OH)(4) uptake in diatoms is presented that proposes two control mechanisms: active transport by Si transporters at low Si(OH)(4) and diffusional transport controlled by the capacity of intracellular pools in relation to cell wall silica incorporation at high Si(OH)(4). The model integrates kinetic and equilibrium components of diatom Si(OH)(4) uptake and consistently explains results in this and previous investigations.  相似文献   

11.
12.
A long-term experiment was conducted to investigate the alleviative effects of silicon (Si) on cadmium (Cd) toxicity in garlic plants grown in pots. Cd and Si were introduced into soil before sowing. Cd was added at a rate of 20 mg kg?1 soil, and Si was applied at two rates: 50 mg SiO2 kg?1 (Si1) and 500 mg SiO2 kg?1 (Si2). There were totally six treatments consisting of CT (control, no added Cd or Si), Si1, Si2, Cd, Cd + Si1, and Cd + Si2. The results showed that Si addition did not affect the growth of garlic plants under control conditions. Under Cd stress, the plant growth and PSII quantum efficiency were inhibited, and they were significantly improved in the presence of added Si. Added Si at Si1 level did not change the soil pH and Cd availability, while it increased Cd accumulation in both shoot and bulb, and improved Cd tolerance. Si added at Si2 level increased the soil pH and decreased Cd availability, and decreased Cd accumulation in different parts of the plant. Added Si had no effect on the activities of soil catalase, urease or invertase regardless of Cd presence. The results suggest that Si could increase Cd tolerance of garlic plants, and the tolerance increase was attributed to not only decreased Cd availability but also in planta detoxification mechanism. There is no evidence indicating that Si-mediated increase of Cd tolerance is related to improved soil microorganism environment as observed in biotic stress conditions.  相似文献   

13.
Silicon uptake and accumulation in higher plants   总被引:34,自引:0,他引:34  
Silicon (Si) accumulation differs greatly between plant species because of differences in Si uptake by the roots. Recently, a gene encoding a Si uptake transporter in rice, a typical Si-accumulating plant, was isolated. The beneficial effects of Si are mainly associated with its high deposition in plant tissues, enhancing their strength and rigidity. However, Si might play an active role in enhancing host resistance to plant diseases by stimulating defense reaction mechanisms. Because many plants are not able to accumulate Si at high enough levels to be beneficial, genetically manipulating the Si uptake capacity of the root might help plants to accumulate more Si and, hence, improve their ability to overcome biotic and abiotic stresses.  相似文献   

14.
Leaf streak, caused by Xanthomonas translucens pv. undulosa, is the major bacterial disease of wheat in Brazil and other countries worldwide. This study aimed to evaluate the effect of silicon (Si) on disease development and the biochemical mechanisms possibly involved in resistance potentialized by this element. Plants of cv. BR‐18, susceptible to leaf streak, were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si increased (P ≤ 0.05) by 96.5% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for calcium content on leaf tissue, so variations in Si accounted for differences in the level of resistance to leaf streak. There was no difference (P ≥ 0.05) between Si treatments for incubation period, latent period, necrotic leaf area, and severity estimated by the software quant . However, chlorotic leaf area was reduced (P ≤ 0.05) by 50.2% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for the bacteria population on leaf tissue; however, the values seemed to be somewhat lower in the +Si treatment from 4 to 8 days after inoculation (d.a.i.) on leaves from plants supplied with Si. There was no difference (P ≥ 0.05) between Si treatments for electrolyte leakage. The concentration of total soluble phenolics and lignin‐thioglycolic acid (LTGA) derivatives did not show any apparent signs of increase during the course of infection and seemed to be slightly higher on plants not supplied with Si at the most advanced stages of bacterial infection. Chitinase activity was high at the most advanced stages of bacterial infection on leaves from +Si treatment and probably affected bacterial growth on leaf tissue. Peroxidase activity following bacterial infection was not increased by Si, but can be linked with the highest concentration of LTGA derivatives at 12 d.a.i. of plants supplied with Si. Polyphenoloxidase activity did not affect wheat resistance to leaf streak regarding of the Si treatments. The results clearly suggest that supplying Si to wheat plants can increase resistance to leaf streak possibly through an increase in tissue lignification and the participation of chitinases and peroxidases.  相似文献   

15.
施硅(Si)可以显著缓解镉(Cd)胁迫对水稻生长发育的毒害效应。本研究通过水培分根试验,研究了Si对水稻幼苗Cd积累及胁迫应答的调节效应。结果表明: Cd胁迫下水稻幼苗的生物量显著降低,加Si可以显著缓解Cd对水稻幼苗生长的抑制效应。水稻幼苗对Cd的吸收、转运和积累明显受到Si的影响,单侧根系Cd胁迫下加Si(Si-Cd+Si,Si-Cd)使根系对Cd的滞留系数达83.3%~83.6%,限制了Cd从根向地上部转移。单侧根系Cd胁迫下非胁迫侧加Si(Si-Cd)处理的植株对Cd的吸收和累积明显增加,尤其是根中Cd的积累量较单侧根系Cd胁迫下无Si(CK-Cd)处理增加了48.2%;而单侧根系Cd胁迫下双侧加Si(Si-Cd+Si)处理则显著降低了根和地上部对Cd的吸收,较CK-Cd处理分别降低了36.7%和54.9%。双侧Cd胁迫下单侧加Si(Cd-Cd+Si)则使根和地上部对Cd的吸收量显著减少,较双侧根Cd胁迫(Cd-Cd)处理分别降低了57.8%和46.5%。Cd胁迫下水稻幼苗根中含较高浓度的Si,加Si则使Cd胁迫下根和地上部积累更多的Si。加Si也影响了水稻幼苗对其他金属元素如钙(Ca)、镁(Mg)、锰(Mn)的吸收,Cd-Cd+Si处理显著增加了根系和地上部的Ca、Mg浓度,但Mn浓度的变化则因Cd胁迫程度而表现不同。加Si对Cd胁迫下根系超氧化物歧化酶(SOD)和过氧化物酶(POD)活性有一定的影响,尤其是Si-Cd处理的胁迫侧POD和非胁迫侧SOD活性显著上升,有利于清除Cd胁迫产生的氧自由基。总之,Si对Cd胁迫下水稻幼苗生长、Cd和Si等的吸收及根系的抗氧化反应有一定的调节效应,植株体内较高的Si浓度有利于增强植株对Cd的耐受性。  相似文献   

16.
A rice mutant defective in Si uptake   总被引:2,自引:0,他引:2  
Ma JF  Tamai K  Ichii M  Wu GF 《Plant physiology》2002,130(4):2111-2117
Rice (Oryza sativa) accumulates silicon (Si) in the tops to levels up to 10.0% of shoot dry weight, but the mechanism responsible for high Si uptake by rice roots is not understood. We isolated a rice mutant (GR1) that is defective in active Si uptake by screening M(2) seeds (64,000) of rice cv Oochikara that were treated with 10(-3) M sodium azide for 6 h at 25 degrees C. There were no phenotypic differences between wild type (WT) and GR1 except that the leaf blade of GR1 remained droopy when Si was supplied. Uptake experiments showed that Si uptake by GR1 was significantly lower than that by WT at both low and high Si concentrations. However, there was no difference in the uptake of other nutrients such as phosphorus and potassium. Si concentration in the xylem sap of WT was 33-fold that of the external solution, but that of GR1 was 3-fold higher than the external solution at 0.15 mM Si. Si uptake by WT was inhibited by metabolic inhibitors including NaCN and 2,4-dinitrophenol and by low temperature, whereas Si uptake by GR1 was not inhibited by these agents. These results suggest that an active transport system for Si uptake is disrupted in GR1. Analysis of F(2) populations between GR1 and WT showed that roots with high Si uptake and roots with low Si uptake segregated at a 3:1 ratio, suggesting that GR1 is a recessive mutant of Si uptake.  相似文献   

17.
Silicon (Si) is important for the growth and development of bone and connective tissues. Several studies have reported that Si supplementation improved bone mineral density (BMD) in female ovarectomized rats. However, few studies have investigated the effects of Si supplementation on bone status and bone metabolism in male animals. The purpose of this study was to investigate the effects of Si supplementation on BMD and balance of calcium (Ca) and magnesium (Mg) in adult male mice. Si was administrated orally through demineralized water containing different contents of Si as a form of sodium metasilicate (0 %, control; 0.025 %, Si50; 0.050 %, Si100; and 0.075 %, Si150) to 9-week-old male mice for 4 weeks. Si supplementation did not alter weight gain or BMD of femur and tibia in male mice. However, a high level of Si (0.05 and 0.075 %) supplementation significantly decreased Mg retention without changing Ca retention. Serum alkaline phosphatase of Si-supplemented groups significantly decreased compared with that of the control. According to these results, short-term Si supplementation did not affect BMD but showed a possible effect on increasing the need for Mg in adult male mice.  相似文献   

18.
Brown spot is one of the most devasting and prevalent disease of rice and its control is mainly dependent on fungicide application. Therefore, this study aimed to examine the effects of Si and Mn on the development of brown spot on rice plants grown in hydroponic culture. Rice plants (cv. ‘Metica‐1’) were grown in plastic pots containing 0 or 2 mm Si (?Si and +Si treatments, respectively) with three Mn rates (0.5, 2.5 and 10 μm ). Plants were inoculated with B. oryzae 39 days after emergence. The following components of resistance were evaluated: incubation period (IP), number of lesions (NL) per cm2 of leaf area, real disease severity (RDS) and area under brown spot progress curve (AUBSPC). The content of Si and Mn in the plant tissues was also determined. Si content was significantly higher in rice tissue of plants of the +Si treatment than of the ?Si treatment regardless of the Mn rates used. The Mn rates did not affect the Si content of the rice plants. The Mn content of the rice tissues was significantly higher in the ?Si treatment than on +Si treatment, regardless of the Mn rate used. The Mn content was significantly lower at 0.5 μm Mn in comparison to the other rates for both ?Si and +Si treatments. The IP of brown spot on rice leaves significantly increased in the +Si treatment; but the Mn rates in the presence of Si had no effect on IP. In the ?Si treatment, the IP was significantly higher only at the rate of 2.5 μm . The NL, RDS and AUBSPC were significantly reduced in the +Si treatment regardless of the Mn rates. The Mn rates in the presence of Si had no effect on these components of resistance. Overall, Si dramatically impacted the development of brown spot regardless of the presence of Mn at either low or high rates. This may be useful in regions where the soil has either toxic or deficient levels of Mn and cultivars with brown spot resistance are not commercially available.  相似文献   

19.
Summary The data presented throughout this paper indicate that soluble Si in plant tissues can give useful information about the Si-status of plants. In fact, this fraction of plant Si seems to be less subject to extraneous variation than does total Si. Silicon which can be extracted with dilute TCA is a discrete fraction. The amount extracted was little influenced by extraction time, amount of extractant, or number of extractions. The soluble-Si fraction was not stable before extraction. Concentration decreased with time. The rate of decrease was temperature related. Storage in a nitrogen atmosphere decreased Siimmobilization.Total and soluble Si were higher in sugar cane leaf sheaths than leaf blades. Total Si was much higher in leaf sheaths and blades than in the internodal tissue. Soluble Si was highest in the least mature tissues; whereas total Si was highest in the recently mature tissue. Once a cane leaf is mature, there seems to be little change in total Si with time. Evidently Si-deposition in sugar cane is associated with growth.Total Si of leaf blades was more responsive to slag applications than was total Si of leaf sheaths. The reverse was true for soluble Si. The mature stalk tended to be the most responsive tissue in relative terms.Both soluble and total Si reflect differences in soil and irrigation water Si. Total Si in the plant was apparently depressed by stress associated with ripening. When silica deposition was depressed, soluble silicon accumulated in the tissue if there was adequate available Si in the soil.Published with the approval of the Director of the Hawaii Agricultural Experiment Station as HAES Tech. Paper No.893. The work was done in cooperation with the Division of Agricultural Development, Tennessee Valley Authority.  相似文献   

20.
Silicon uptake and transport is an active process in Cucumis sativus   总被引:2,自引:0,他引:2  
Cucumis sativus is a species known to accumulate high levels of silicon (Si) in the tops, though the mechanism for its high Si uptake is little understood. In a series of hydroponic experiments, we examined uptake and xylem loading of Si in C. sativus along with Vicia faba at three levels of Si (0.085, 0.17 and 1.70 mm). Measured Si uptake in C. sativus was more than twice as high as calculated from the rate of transpiration assuming no discrimination between silicic acid and water in uptake. Measured Si uptake in V. faba, however, was significantly lower than the calculated uptake. Concentration of Si in xylem exudates was several-fold higher in C. sativus, but was significantly lower in V. faba compared with the Si concentration in external solutions, regardless of Si levels. Silicon uptake was strongly inhibited by low temperature and 2,4-dinitrophenol, a metabolic inhibitor, in C. sativus but not in V. faba. It can be concluded that Si uptake and transport in C. sativus is active and independent of external Si concentrations, in contrast to the process in V. faba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号