首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Serratia marcescens N28b wbbL gene has been shown to complement the rfb-50 mutation of Escherichia coli K-12 derivatives, and a wbbL mutant has been shown to be impaired in O4-antigen biosynthesis (X. Rubirés, F. Saigí, N. Piqué, N. Climent, S. Merino, S. Albertí, J. M. Tomás, and M. Regué, J. Bacteriol. 179:7581-7586, 1997). We analyzed a recombinant cosmid containing the wbbL gene by subcloning and determination of O-antigen production phenotype in E. coli DH5alpha by sodium dodecyl sulfate-polyacrylamide electrophoresis and Western blot experiments with S. marcescens O4 antiserum. The results obtained showed that a recombinant plasmid (pSUB6) containing about 10 kb of DNA insert was enough to induce O4-antigen biosynthesis. The same results were obtained when an E. coli K-12 strain with a deletion of the wb cluster was used, suggesting that the O4 wb cluster is located in pSUB6. No O4 antigen was produced when plasmid pSUB6 was introduced in a wecA mutant E. coli strain, suggesting that O4-antigen production is wecA dependent. Nucleotide sequence determination of the whole insert in plasmid pSUB6 showed seven open reading frames (ORFs). On the basis of protein similarity analysis of the ORF-encoded proteins and analysis of the S. marcescens N28b wbbA insertion mutant and wzm-wzt deletion mutant, we suggest that the O4 wb cluster codes for two dTDP-rhamnose biosynthetic enzymes (RmlDC), a rhamnosyltransferase (WbbL), a two-component ATP-binding-cassette-type export system (Wzm Wzt), and a putative glycosyltransferase (WbbA). A sequence showing DNA homology to insertion element IS4 was found downstream from the last gene in the cluster (wbbA), suggesting that an IS4-like element could have been involved in the acquisition of the O4 wb cluster.  相似文献   

2.
A cosmid-based genomic library of Serratia marcescens N28b was introduced into Escherichia coli DH5alpha, and clones were screened for serum resistance. One clone was found resistant to serum, to bacteriocin 28b, and to bacteriophages TuIa and TuIb. This clone also showed O antigen in its lipopolysaccharide. Subcloning and sequencing experiments showed that a 2,124-bp DNA fragment containing the rmlD and wbbL genes was responsible for the observed phenotypes. On the basis of amino acid similarity, we suggest that the 288-residue RmlD protein is a dTDP-L-rhamnose synthase. Plasmid pJT102, containing only the wbbL gene, was able to induce O16-antigen production and serum resistance in E. coli DH5alpha. These results suggest that the 282-residue WbbL protein is a rhamnosyltransferase able to complement the rJb-50 mutation in E. coli K-12 derivatives, despite the low level of amino acid identity between WbbL and the E. coli rhamnosyltransferase (24.80%). S. marcescens N28b rmlD and wbbL mutants were constructed by mobilization of suicide plasmids containing a portion of rmlD or wbbL. These insertion mutants were unable to produce O antigen; since strain N28b produces O4 antigen, these results suggest that both genes are involved in O4-antigen biosynthesis.  相似文献   

3.
4.
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.  相似文献   

5.
The goal of presented study was to determine by PCR differences in existence or homology level of selected genes involved in K. pneumoniae lipopolysaccharide (LPS) synthesis and application of obtained results for genotyping. Number of 26 reference strains of K. pneumoniae belonging to serogroups O1, O2a, O2a2e, O2a2e2h, O2a2f2g, O3, O4, O5, O7, O8, and O12 was tested together with 13 epidemic strains from 5 outbreaks and 6 casual isolates for the existence of 7 (waaA, waaE, waaL, waaQ, waaZ, waaX and uge) and 4 (wbdA, wbdC, manB, wbbO) genes of the waa and wb clusters for LPS biosynthesis. Based on PCR results, 10 and 11 genotypes were distinguished in tested strains for genes from waa and wb clusters respectively. Derived dendrograms were topologically dissimilar, however observed correlation between clonal groups and O-group was marginal for both compared clusters. Since we aimed to develop genotyping method for K. pneumoniae, genes from clusters waa and wb were used together to enhance the distinguishing capacity. Twenty-one genotypes were distinguished in 45 tested strains (DI=0,46) when 11 genes were applied for typing. Although no apparent correlation between genotype and serogroup was observed, epidemic isolates from 5 outbreaks were diversified into 5 genotypes, whereas strains from the same outbreak were indistinguishable. Described here genotyping method is determinative and was found time and cost effective. This method may be applied in every clinical laboratory equipped in an ordinary PCR apparatus.  相似文献   

6.
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.  相似文献   

7.
Bacteriocin 28b from Serratia marcescens binds to Escherichia coli outer membrane proteins OmpA and OmpF and to lipopolysaccharide (LPS) core (J. Enfedaque, S. Ferrer, J. F. Guasch, J. Tomás, and M. Requé, Can. J. Microbiol. 42:19-26, 1996). A cosmid-based genomic library of S. marcescens was introduced into E. coli NM554, and clones were screened for bacteriocin 28b resistance phenotype. One clone conferring resistance to bacteriocin 28b and showing an altered LPS core mobility in polyacrylamide gel electrophoresis was found. Southern blot experiments using DNA fragments containing E. coli rfa genes as probes suggested that the recombinant cosmid contained S. marcescens genes involved in LPS core biosynthesis. Subcloning, isolation of subclones and Tn5tac1 insertion mutants, and sequencing allowed identification of two apparently cotranscribed genes. The deduced amino acid sequence from the upstream gene showed 80% amino acid identity to the KdtA protein from E. coli, suggesting that this gene codes for the 3-deoxy-manno-octulosonic acid transferase of S. marcescens. The downstream gene (kdtX) codes for a protein showing 20% amino acid identity to the Haemophilus influenzae kdtB gene product. The S. marcescens KdtX protein is unrelated to the KdtB protein of E. coli K-12. Expression of the kdtX gene from S. marcescens in E. coli confers resistance to bacteriocin 28b.  相似文献   

8.
The lysyl-tRNA synthetase (LysRS) system of Escherichia coli K-12 consists of two genes, lysS, which is constitutive, and lysU, which is inducible. It is of importance to know how extensively the two-gene LysRS system is distributed in procaryotes, in particular, among members of the family Enterobacteriaceae. To this end, the enterics E. coli K-12 and B; E. coli reference collection (ECOR) isolates EC2, EC49, EC65, and EC68; Shigella flexneri; Salmonella typhimurium; Klebsiella pneumoniae; Enterobacter aerogenes; Serratia marcescens; and Proteus vulgaris and the nonenterics Pseudomonas aeruginosa and Bacillus megaterium were grown in AC broth to a pH of 5.5 or less or cultured in SABO medium at pH 5.0. These growth conditions are known to induce LysRS activity (LysU synthesis) in E. coli K-12. Significant induction of LysRS activity (twofold or better) was observed in the E. coli strains, the ECOR isolates, S. flexneri, K. pneumoniae, and E. aerogenes. To demonstrate an association between LysRS induction and two distinct LysRS genes, Southern blotting was performed with a probe representing an 871-bp fragment amplified from an internal portion of the coding region of the lysU gene. In initial experiments, chromosomal DNA from E. coli K-12 strain MC4100 (lysS+ lysU+) was double digested with either BamHI and HindIII or BamHI and SalI, producing hybridizable fragments of 12.4 and 4.2 kb and 6.6 and 5.2 kb, respectively. Subjecting the chromosomal DNA of E. coli K-12 strain GNB10181 (lysS+ delta lysU) to the same regimen established that the larger fragment from each digestion contained the lysU gene. The results of Southern blot analysis of the other bacterial strains revealed that two hybridizable fragments were obtained from all of the E. coli and ECOR collection strains examined and S. flexneri, K. pneumoniae, and E. aerogenes. Only one lysU homolog was found with S. typhimurium and S. marcescens, and none was obtained with P. vulgaris. A single hybridizable band was found with both P. aeruginose and B, megaterium. These results show that the dual-gene LysRS system is not confined to E. coli K-12 and indicate that it may have first appeared in the genus Enterobacter.  相似文献   

9.
A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch beta-D-Glc to the O-4 position of L-glycero-D-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica.  相似文献   

10.
A 32P-labeled fragment of DNA, encoding the major part of the chromosomal ampC beta-lactamase gene of Escherichia coli K-12, was used as a hybridization probe for homologous DNA sequences in colonies of Neisseria gonorrhoeae, Pseudomonas aeruginosa, and different enterobacterial species. The ampC probe detected the presence of homologous DNA sequences in clinical isolates of E. coli, Shigella flexneri, Shigella sonnei, Klebsiella pneumoniae, Salmonella typhimurium, Serratia marcescens, and P. aeruginosa. No hybridization was found with N. gonorrhoeae colonies. In Southern blotting experiments the ampC probe hybridized to chromosomal DNA fragments of the same size in all enterobacterial species tested. However, the degree of hybridization differed with DNA from different species. DNA from the Shigella species strongly hybridized to the ampC probe. Furthermore, antibodies raised against purified E. coli K-12 ampC beta-lactamase precipitated beta-lactamases from the Shigella species, suggesting extensive sequence similarities between the ampC genes of these genera. The production of chromosomal beta-lactamase in S. sonnei increased with increasing growth rate similar to E. coli K-12. This growth rate response was abolished in two beta-lactamase-hyperproducing S. sonnei mutants, which thus seem similar to E. coli K-12 attenuator mutants. We propose that both the structure and regulation of the chromosomal beta-lactamase genes are very similar in E. coli and in S. sonnei.  相似文献   

11.
Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.  相似文献   

12.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

13.
We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies.  相似文献   

14.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo.  相似文献   

15.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

16.
O antigen is part of the lipopolysaccharide present in the outer membrane of gram-negative bacteria. Escherichia coli and Salmonella enterica each have many forms of O antigen, but only three are common to the two species. It has been found that, in general, O-antigen genes are of low GC content. This deviation in GC content from that of typical S. enterica or E. coli genes (51%) is thought to indicate that the O-antigen DNA originated in species other than S. enterica or E. coli and was captured by lateral transfer. The O-antigen structure of Salmonella enterica O35 is identical to that of E. coli O111, commonly found in enteropathogenic E. coli strains. This O antigen, which has been shown to be a virulence factor in E. coli, contains colitose, a 3,6-dideoxyhexose found only rarely in the Enterobacteriaceae. Sequencing of the O35-antigen gene cluster of S. enterica serovar Adelaide revealed the same gene order and flanking genes as in E. coli O111. The divergence between corresponding genes of these two gene clusters at the nucleotide level ranges from 21.8 to 11.7%, within the normal range of divergence between S. enterica and E. coli. We conclude that the ancestor of E. coli and S. enterica had an O antigen identical to the O111 and O35 antigens, respectively, of these species and that the gene cluster encoding it has survived in both species.  相似文献   

17.
The lipopolysaccharide (LPS) molecule is an important virulence determinant in Klebsiella pneumoniae. Studies on the serotype O1 LPS were initiated to determine the basis for antigenic heterogeneity previously observed in the O1 side chain polysaccharides and to resolve apparent ambiguities in the reported polysaccharide structure. Detailed chemical analysis, involving methylation and 1H- and 13C-nuclear magnetic resonance studies, demonstrated that the O-side chain polysaccharides of serotype O1 LPS contained a mixture of two structurally distinct D-galactan polymers. The repeating unit structures of these two polymers were identified as [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] (D-galactan I) and [----3)-alpha-D-Galp-(1----3)-beta-D-Galp-(1----] (D-Galactan II). D-Galactan I polysaccharides were heterogeneous in size and were detected throughout the sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) profile of O1 LPS. In contrast, D-galactan II was confined to the higher-molecular-weight region. The structures of the two D-galactans were not influenced by simultaneous synthesis of a capsular K antigen. Apparently, neither of the D-galactans constitutes a common antigen widespread in Klebsiella spp. as determined by immunochemical analysis. Examination of the LPSs in mutants indicated that expression of D-galactan I can occur independently of D-galactan II. Transconjugants of Escherichia coli K-12 strains carrying the his region of K. pneumoniae were constructed by chromosome mobilization with RP4::mini-Mu. In these transconjugants, the O antigen encoded by the his-linked rfb locus was determined to be D-galactan I, suggesting that genes involved in the expression of D-galactan II are not closely linked to the rfb cluster.  相似文献   

18.
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-beta-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells.  相似文献   

19.
The rfb gene cluster which determines the biosynthesis of the Shigella flexneri serotype 6 O-antigen specificity has been cloned in pHC79, generating plasmids pPM3115 and pPM3116. These plasmids mediate expression, in Escherichia coli K-12, of lipopolysaccharides (LPS) immunologically similar to the S. flexneri type 6 LPS as judged by SDS-PAGE and Western-immunoblot analysis using S. flexneri type 6 specific antisera. Thus, unlike other S. flexneri serotypes, no additional loci are required for serotype specificity. This expression is independent of E. coli K-12 rfb genes. Southern-hybridization analysis using the 16.2-kb BglII probe from S. flexneri type 6 rfb region detected very little sequence homology in S. flexneri serotypes 1-5, however, some homology was detected with E. coli O2 and O18, but not in E. coli 0101 strains, Salmonella and Vibrio cholerae.  相似文献   

20.
The rfp gene of Shigella dysenteriae 1 and the rfa genes of Escherichia coli K-12 and Salmonella typhimurium LT2 have been studied to determine their relationship to lipopolysaccharide (LPS) core heterogeneity and their role in the attachment of O antigen to LPS. It has been inferred from the nucleotide sequence that the rfp gene encodes a protein of 41,864 Da which has a structure similar to that of RfaG protein. Expression of this gene in E. coli K-12 results in the loss of one of the three bands seen in gel analysis of the LPS and in the appearance of a new, more slowly migrating band. This is consistent with the hypothesis that Rfp is a sugar transferase which modifies a subset of core molecules so that they become substrates for attachment of S. dysenteriae O antigen. A shift in gel migration of the bands carrying S. dysenteriae O antigen and disappearance of the Rfp-modified band in strains producing O antigen suggest that the core may be trimmed or modified further before attachment of O antigen. Mutation of rfaL results in a loss of the rough LPS band which appears to be modified by Rfp and prevents the appearance of the Rfp-modified band. Thus, RfaL protein is involved in core modification and is more than just a component of the O-antigen ligase. The products of rfaK and rfaQ also appear to be involved in modification of the core prior to attachment of O antigen, and the sites of rfaK modification are different in E. coli K-12 and S. typhimurium. In contrast, mutations in rfaS and rfaZ result in changes in the LPS core but do not affect the attachment of O antigen. We propose that these genes are involved in an alternative pathway for the synthesis of rough LPS species which are similar to lipooligosaccharides of other species and which are not substrates for O-antigen attachment. All of these studies indicate that the apparent heterogeneity of E. coli K-12 LPS observed on gels is not an artifact but instead a reflection of functional differences among LPS species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号