首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

2.
The lipopolysaccharide O antigens of Klebsiella pneumoniae serotype O1 and Serratia marcescens serotype O16 both contain a repeating unit disaccharide of [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->]; the resulting polymer is known as D-galactan I. In K. pneumoniae serotype O1, the genes responsible for the synthesis of D-galactan I are found in the rfb gene cluster (rfbKpO1). We report here the cloning and analysis of the rfb cluster from S. marcescens serotype O16 (rfbSmO16). This is the first rfb gene cluster examined for the genus Serratia. Synthesis of D-galactan I is an rfe-dependent process for both K. pneumoniae serotype O1 and S. marcescens serotype O16. Hybridization experiments with probes derived from each of the six rfbKpO1 genes indicate that the cloned rfbSmO16 cluster contains homologous genes arranged in the same order. However, the degree of homology at the nucleotide sequence level was sufficiently low that hybridization was detected only under low-stringency conditions. rfbABSmO16 genes were subcloned and shown to encode an ABC-2 (ATP-binding cassette) transporter which is functionally identical to the one encoded by the corresponding rfb genes from K. pneumoniae serotype O1. The amino acid sequences of the predicted RfbA and RfbB homologs showed identities of 75.7% (87.9% total similarity) and 78.0% (86.5% total similarity), respectively. The last gene of the rfbKpO1 cluster, rfbFKpO1, encodes a bifunctional galactosyltransferase which initiates the formation of D-galactan I. RfbFKpO1 and RfbFSmO16 are 57.6% identical (with 71.1% total similarity), and both show similarity with RfpB, the galactosyltransferase involved in the synthesis of Shigella dysenteriae type I O-polysaccharide. The G+C contents of the rfbAB genes from each organism are quite similar, and values are lower than those typical for the species. However, the G+C content of rfbFSmO16 (47.6%) was much higher than that of rfbFKpO1 (37.3%), despite the fact that the average for each species (52 to 60%) falls within the same range.  相似文献   

3.
Previous chemical analyses identified two structurally distinct O polysaccharides in the lipopolysaccharide of Klebsiella pneumoniae serotype O1:K20 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). The polysaccharides were designated D-galactan I and D-galactan II; both are homopolymers of galactose. To begin investigation of the synthesis and expression of these O polysaccharides, we have cloned a 7.3-kb region of the chromosome of K. pneumoniae O1:K20, containing the his-linked rfbkpO1 (O-antigen biosynthesis) gene cluster. In Escherichia coli K-12 and Salmonella typhimurium, rfbkpO1 directed the synthesis of D-galactan I but not D-galactan II. The cloned rfbkpO1 genes did not complement a mutation affecting D-galactan II synthesis in K. pneumoniae CWK37, suggesting that another (unlinked) locus is also required for D-galactan II expression. However, plasmids carrying rfbkpO1 did complement a mutation in K. pneumoniae CWK43 which eliminated expression of both D-galactan I and D-galactan II, indicating that at least one function is common to synthesis of both polymers. Synthesis of D-galactan I was dependent on chromosomal galE and rfe genes. Hybridization experiments indicated that the rfbkpO1 sequences from different serotype O1 Klebsiella isolates showed some restriction fragment length polymorphism.  相似文献   

4.
The 6.6-kb rfb gene cluster from Klebsiella pneumoniae serotype O1 (rfbKpO1) contains six genes whose products are required for the biosynthesis of a lipopolysaccharide O antigen with the following repeating unit structure: -->3-beta-D-Galf-1-->3-alpha-D-Galp-1-->(D-galactan I). rfbFKpO1 is the last gene in the cluster, and its gene product is required for the initiation of D-galactan I synthesis. Escherichia coli K-12 strains expressing the RfbFKpO1 polypeptide contain dual galactopyranosyl and galactofuranosyl transferase activity. This activity modifies the host lipopolysaccharide core by adding the disaccharide beta-D-Galf-1-->3-alpha-D-Galp, representing a single repeating unit of D-galactan I. The formation of the lipopolysaccharide substituted either with the disaccharide or with authentic polymeric D-galactan I is dependent on the activity of the Rfe enzyme. Rfe (UDP-GlcpNAc::undecaprenylphosphate GlcpNAc-1-phosphate transferase) catalyzes the formation of the lipid-linked biosynthetic intermediate to which galactosyl residues are transferred during the initial steps of D-galactan I synthesis. The rfbFKpO1 gene comprises 1,131 nucleotides, and the predicted polypeptide consists of 373 amino acid residues with a predicted M(r) of 42,600. A polypeptide with an M(r) of 42,000 was evident in sodium dodecyl sulfate-polyacrylamide gels when rfbKpO1 was expressed behind the T7 promoter. The carboxy-terminal region of RfbFKpO1 shares similarity with the carboxy terminus of RfpB, a galactopyranosyl transferase which is involved in the synthesis of the type 1 O antigen of Shigella dysenteriae.  相似文献   

5.
Klebsiella species express a family of structurally related lipopolysaccharide O antigens which share a common backbone known as D-galactan I. Serotype specificity results from modification of D-galactan I by addition of domains of altered structure or by substitution with O-acetyl and/or alpha-D-Galp side groups with various linkages and stoichiometries. In the prototype, Klebsiella serotype O1, the his-linked rfb gene cluster is required for synthesis of D-galactan I, but genes conferring serotype specificity are unlinked. The D-galactan I part of the O polysaccharide is O acetylated in Klebsiella serotype O8. By cloning the rfb region from Klebsiella serotype O8 and analyzing the O polysaccharide synthesized in Escherichia coli K-12 hosts, we show that, like rfbO1, the rfbO8 region directs formation of unmodified D-galactan I. The rfbAB genes encode an ATP-binding cassette transporter required for export of polymeric D-galactan I across the plasma membrane prior to completion of the lipopolysaccharide molecule by ligation of the O polysaccharide to lipid A-core. Complementation experiments show that the rfbAB gene products in serotypes O1 and O8 are functionally equivalent and interchangeable. Hybridization experiments and physical mapping of the rfb regions in related Klebsiella serotypes suggest the existence of shared rfb genes with a common organization. However, despite the functional equivalence of these rfb gene clusters, at least three distinct clonal groups were detected in different Klebsiella species and subspecies, on the basis of Southern hybridization experiments carried out under high-stringency conditions. The clonal groups cannot be predicted by features of the O-antigen structure. To examine the relationships in more detail, the complete nucleotide sequence of the serotype O8 rfb cluster was determined and compared with that of the serotype O1 prototype. The nucleotide sequences for the six rfb genes showed variations in moles percent G+C values and in the values for nucleotide sequence identity, which ranged from 66.9 to 79.7%. The predicted polypeptides ranged from 64.3% identity (78.4% total similarity) to 94.3% identity (98.0% similarity). The results presented here are not consistent with dissemination of the Klebsiella D-galactan I rfb genes through recent lateral transfer events.  相似文献   

6.
D-Galactan I is an O-antigenic polymer with the repeat unit structure [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->], that is found in the lipopolysaccharide of Klebsiella pneumoniae O1 and other gram-negative bacteria. A genetic locus containing six genes is responsible for the synthesis and assembly of D-galactan I via an ATP-binding cassette (ABC) transporter-dependent pathway. The galactosyltransferase activities that are required for the processive polymerization of D-galactan I were identified by using in vitro reactions. The activities were determined with endogenous lipid acceptors in membrane preparations from Escherichia coli K-12 expressing individual enzymes (or combinations of enzymes) or in membranes reconstituted with specific lipid acceptors. The D-galactan I polymer is built on a lipid acceptor, undecaprenyl pyrophosphoryl-GlcpNAc, a product of the WecA enzyme that participates in the biosynthesis of enterobacterial common antigen and O-antigenic polysaccharide (O-PS) biosynthesis pathways. This intermediate is directed into D-galactan I biosynthesis by the bifunctional wbbO gene product, which sequentially adds one Galp and one Galf residue from the corresponding UDP-sugars to form a lipid-linked trisaccharide. The two galactosyltransferase activities of WbbO are separable by limiting the UDP-Galf precursor. Galactosyltransferase activity in membranes reconstituted with exogenous lipid-linked trisaccharide acceptor and the known structure of D-galactan I indicate that WbbM catalyzes the subsequent transfer of a single Galp residue to form a lipid-linked tetrasaccharide. Chain extension of the D-galactan I polymer requires WbbM for Galp transferase, together with Galf transferase activity provided by WbbO. Comparison of the biosynthetic pathways for D-galactan I and the polymannose E. coli O9a antigen reveals some interesting features that may reflect a common theme in ABC transporter-dependent O-PS assembly systems.  相似文献   

7.
8.
Escherichia coli serotype O9:K(A)30 and Klebsiella O1:K20 produce thermostable capsular polysaccharides or K antigens, which are chemically and serologically indistinguishable. Plasmid pULB113 (RP4::mini-Mu) has been used to mediate chromosomal transfer from E. coli O9:K30 and Klebsiella O1:K20 to a multiply marked, unencapsulated, E. coli K12 recipient. Analysis of the cell surface antigens of the transconjugants confirmed previous reports that the genetic determinants for the E. coli K(A) antigens are located near the his and rfb (O antigen) loci on the E. coli linkage map. The Klebsiella K20 capsule genes were also found to be in close proximity to the his and rfb loci. Electron microscopy revealed significant differences in the structural organization of capsular polysaccharides in these two microorganisms and the morphological differences were also readily apparent in transconjugants expressing the respective K antigens. These results are consistent with the interpretation that at least some of the organizational properties of capsular polysaccharides may be genetically determined, rather than being a function of the outer membrane to which the capsular polysaccharides are ultimately attached.  相似文献   

9.
Hsieh PF  Lin TL  Yang FL  Wu MC  Pan YJ  Wu SH  Wang JT 《PloS one》2012,7(3):e33155
Klebsiella pneumoniae is the common cause of a global emerging infectious disease, community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) and lipopolysaccharide (LPS) are critical for this microorganism's ability to spread through the blood and to cause sepsis. While CPS type K1 is an important virulence factor in K. pneumoniae causing PLA, the role of LPS in PLA is not clear. Here, we characterize the role of LPS O antigen in the pathogenesis of K. pneumoniae causing PLA. NTUH-K2044 is a LPS O1 clinical strain; the presence of the O antigen was shown via the presence of 1,3-galactan in the LPS, and of sequences that align with the wb gene cluster, known to produce O-antigen. Serologic analysis of K. pneumoniae clinical isolates demonstrated that the O1 serotype was more prevalent in PLA strains than that in non-tissue-invasive strains (38/42 vs. 9/32, P<0.0001). O1 serotype isolates had a higher frequency of serum resistance, and mutation of the O1 antigen changed serum resistance in K. pneumoniae. A PLA-causing strain of CPS capsular type K2 and LPS serotype O1 (i.e., O1:K2 PLA strain) deleted for the O1 synthesizing genes was profoundly attenuated in virulence, as demonstrated in separate mouse models of septicemia and liver abscess. Immunization of mice with the K2044 magA-mutant (K(1) (-) O(1)) against LPS O1 provided protection against infection with an O1:K2 PLA strain, but not against infection with an O1:K1 PLA strain. Our findings indicate that the O1 antigen of PLA-associated K. pneumoniae contributes to virulence by conveying resistance to serum killing, promoting bacterial dissemination to and colonization of internal organs after the onset of bacteremia, and could be a useful vaccine candidate against infection by an O1:K2 PLA strain.  相似文献   

10.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

11.
The structure of lipid A-core region of the lipopolysaccharide (LPS) from Klebsiella pneumoniae serotype O3 was determined using NMR, MS and chemical analysis of the oligosaccharides, obtained by mild acid hydrolysis, alkaline deacylation, and deamination of the LPS: [carbohydrate structure see text] where P is H or alpha-Hep; J is H or beta-GalA; R is H or P (in the deacylated oligosaccharides).Screening of the LPS from K. pneumoniae O1, O2, O4, O5, O8, and O12 using deamination showed that they also contain alpha-Hep-(1-->4)-alpha-Kdo-(2-->6)-GlcN and alpha-Kdo-(2-->6)-GlcN fragments.  相似文献   

12.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

13.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C(1). On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

14.
Escherichia coli group I capsular K antigens are found in two forms on the cell surface. The KLPS form is linked to lipopolysaccharide lipid A core, whereas the high-molecular-weight capsular form is assembled independently of lipid A core. Subgroup IB K antigens are generally co-expressed with either the O8 or O9 antigen and, under the appropriate conditions, with the exopolysaccharide, colanic acid. To examine the relationships between the genetic loci and the synthetic pathways for these various cell-surface polymers, the gene cluster responsible for expression of a prototype group IB K antigen (serotype K40) was cloned and the flanking chromosomal regions characterized. Analysis of the six orf s within the cluster indicates features typical of Wzy (Rfc)-dependent O antigens. Synthesis of group IB K antigens is initiated by WecA (Rfe), a UDP-GlcNAc::undecaprenylphosphate GlcNAc-1-phosphate transferase, and the chain length of K40LPS is determined by the wzz gene product. The his -region of the E . coli O8:K40 prototype is almost exclusively devoted to the expression of three different surface polysaccharides. The rfb K40 cluster is located adjacent to the cps (colanic acid synthesis) and rfb O8 (O8 antigen synthesis) loci in the gene order: his - rfb O8/O9– wzz – ugd – gnd – rfb K40– galF – cps . Thus, rfb K40 is in the location occupied by other Wzy-dependent rfb gene clusters, and rfb O8/O9 represents an additional locus.  相似文献   

15.
The aqueous-phase lipopolysaccharide isolated from Pasteurella haemolytica serotype T10 cells by the phenol-water extraction method was found to be S-type lipopolysaccharide which possessed O-antigenic polysaccharide chains composed only of D-galactose residues. Structural analysis of the O-polysaccharide, using a combination of 1D and 2D 1H- and 13C-n.m.r. methods, led to the identification of the disaccharide repeating-unit as [----3)-alpha-D-Galp-(1----3)-beta-D-Galf-(1----]n. The serological cross-reactivity between P. haemolytica serotypes T4 and T10 can now be related to the structural similarity of the antigenic LPS O-polysaccharides.  相似文献   

16.
4-Methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranoside (22), a building block for the alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap fragment of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----X)-D- RibOH-(5-P----]n (6A, X = 3; 6B, X = 4) has been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside was coupled with 4-methoxybenzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside in ether, using methyl triflate as promoter. The resulting alpha-D-Glcp-(1----3)-alpha-L-Rhap derivative was deallylated with KOBut in N,N-dimethylformamide followed by 0.1M HCl in 9:1 acetone-water. The product was coupled with 3,4,6-tri-O-acetyl-2-O-allyl-alpha,beta-D-galactopyranosyl trichloroacetimidate in ether, using trimethylsilyl triflate, to yield 19. Deacetylation, benzylation, and deallylation then gave 22.  相似文献   

17.
We report sequencing of the O antigen encoded by the rfb gene cluster of Salmonella enterica serotype Jangwani (O17) and Salmonella serotype Cerro (O18). We developed serogroup O17- and O18-specific PCR assays based on rfb gene targets and found them to be sensitive and specific for rapid identification of Salmonella serogroups O17 and O18.  相似文献   

18.
O-alpha-d-Glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose (15), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)-al pha, beta-L-rhamnopyranose (17), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----3)-D-ribitol (23), and O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----4)-D-ribitol (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)- D-Rib-ol-(5-P----]n; 6A X = 3, 6B X = 4), have been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (3) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (4), and subsequent deallylation (----14) and debenzylation gave 15. Condensation of 14 with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside (2) followed by debenzylation gave 17. Acetylation of 17 followed by removal of AcO-1, conversion into the imidate, coupling with 1,2,4,5-tetra-O-benzyl-D-ribitol (11), deacetylation, and debenzylation gave 23. Coupling of the imidate with 1-O-allyloxycarbonyl-2,3,5-tri-O-benzyl-D-ribitol (12) followed by deallyloxycarbonylation, deacetylation, and debenzylation yielded 27.  相似文献   

19.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

20.
Klebsiella pneumoniae O5, Escherichia coli O8 and Serratia marcescens 3255 were shown to cross-react in both ELISA and immunoblotting. The cross-reaction appeared to be due to the O antigen of their lipopolysaccharide (LPS). In addition, there was evidence that the reactions of these strains with their homologous antisera were due, in part, to determinants other than O polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号