首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.  相似文献   

2.
Previously, we demonstrated that Ath1 is a quantitative trait locus for aortic fatty streak formation, located on Chromosome (chr) 1, with susceptibility in C57BL/6J mice and resistance in C3H/HeJ and BALB/cJ mice fed an atherogenic diet. In this study, we find an atherosclerosis susceptibility locus in the same region of Chr 1 by constructing two congenic strains with the resistance phenotype transferred from different resistant strains, PERA/EiJ or SPRETUS/EiJ. By backcrossing one congenic strain to C57BL/6J and testing recombinant animals, we reduced the distance of the atherosclerosis susceptibility region to 2.3 cM between D1Mit14 and D1Mit10. Further testing of nine recombinant animals showed that eight of the nine were consistent with a further narrowing between D1Mit159 and D1Mit398 a distance of 0.66 cM. This region encompasses a number of potential candidate genes including the thiol-specific antioxidant gene Aop2, also known as peroxiredoxin 5 (Prdx5). AOP2 is capable of reducing hydroperoxides and lipid peroxides in the cell. To investigate Aop2 as a potential candidate, we mapped Aop2 in our backcross and localized it to the atherosclerosis susceptibility interval. We determined that Aop2 is highly expressed in atherosclerosis-related tissues including liver and heart. We also found an inverse correlation between Aop2 mRNA in liver and atherosclerosis phenotype for strains C57BL/6 and the resistant congenic derived from SPRETUS/EiJ. Since LDL oxidation has been implicated in the pathogenesis of this disease, and AOP2 possesses antioxidant activity, we suggest the role of Aop2 in atherosclerosis susceptibility needs to be further explored.  相似文献   

3.
Peroxiredoxin 6 (Prdx6), a bifunctional 25-kDa protein with both GSH peroxidase and phospholipase A2 activities, is the only mammalian 1-Cys member of the peroxiredoxin superfamily and is expressed in all major organs, with a particularly high level in lung. Prdx6 uses GSH as an electron donor to reduce H2O2 and other hydroperoxides including phospholipid hydroperoxides at approximately 5 micromol/mg protein/min with K1 approximately 3 x 10(6) M(-1) s(-1). Oxidation of the Cys47 to a sulfenic acid during catalysis requires piGST-catalyzed glutathionylation and reduction with GSH to complete the enzymatic cycle. Prdx6 stably overexpressed in cells protected against oxidative stress, whereas antisense treatment resulted in oxidant stress and apoptosis. Adenoviral-mediated overexpression of Prdx6 in mouse lungs protected against the toxicity of hyperoxia, whereas Prdx6-null mice were more sensitive to the effects of hyperoxia or paraquat. We postulate that Prdx6 functions in antioxidant defense mainly by facilitating repair of damaged cell membranes via reduction of peroxidized phospholipids. The PLA2 activity of Prdx6 is Ca2+ independent and maximal at acidic pH. Inhibition of PLA2 activity results in alterations of lung surfactant phospholipid synthesis and turnover. Thus, Prdx6, a unique mammalian peroxiredoxin, is an important antioxidant enzyme and has a major role in lung phospholipid metabolism.  相似文献   

4.
5.
6.
Previous studies with peroxiredoxin 6 (Prdx6) null mice demonstrated that the phospholipase A(2) activity of this enzyme plays a major role in lung phospholipid metabolism. This study evaluated lung phospholipid metabolism in transgenic mice that over-express Prdx6. Lung lysosomal type PLA(2) activity in transgenic mice was 222% of wild type in lung homogenate and 280% in isolated lamellar bodies. Total phospholipid, phosphatidylcholine (PC) and disaturated PC were decreased approximately 20-35% in bronchoalveolar lung fluid, lung homogenate, and lung lamellar bodies in transgenic mice although lung compliance and type 2 cell ultrastructure were unaltered. To study metabolism, unilamellar liposomes ((3)H-DPPC: PC: cholesterol: PG, 10: 5: 3: 2 mol fraction) were instilled endotracheally in anesthetized mice and lungs were removed for perfusion. Compared to wild type, transgenic mice showed similar net uptake of liposomes in 2 h, but significantly increased (3)H-DPPC degradation (38.9+/-1.1 vs. 29.0+/-1.3% of recovered dpm). The PLA(2) competitive inhibitor MJ33 decreased degradation to 15% of recovered dpm in both transgenic and wild type lungs. Incorporation of [(14)C] palmitate into DSPC at 24 h after its intravenous injection was markedly increased in both the lung surfactant (+100%) and lamellar bodies (+188%) while incorporation of [(3)H] choline was increased by only 10-20%. These results indicate increased DPPC degradation and synthesis by the reacylation pathway with Prdx6 overexpression and provide additional evidence that the PLA(2) activity of Prdx6 has an important role in lung surfactant turnover.  相似文献   

7.
Reactive oxygen species, especially hydrogen peroxide, are important in cellular signal transduction. However, excessive amounts of these species damage tissues and cells by oxidizing virtually all important biomolecules. Peroxiredoxin 6 (PRDX6) (also called antioxidant protein 2, or AOP2) is a novel peroxiredoxin family member whose function in vivo is unknown. Through immunohistochemistry, we have determined that the PRDX6 protein was widely expressed in every tissue examined, most abundantly in epithelial cells. It was found in cytosol, but not in membranes, organelles, and nuclei fractions. Prdx6 mRNA was also expressed in every tissue examined. The widespread expression of Prdx6 suggested that its functions were quite important. To determine these functions, we generated Prdx6-targeted mutant (Prdx6-/-) mice, confirmed the gene disruption by Southern blots, PCR, RT-PCR, Western blots, and immunohistochemistry, and compared the effects of paraquat, hydrogen peroxide, and t-butyl hydroperoxide on Prdx6-/- and wild-type (Prdx6+/+) macrophages, and of paraquat on Prdx6-/- and Prdx6+/+ mice. Prdx6-/- macrophages had higher hydrogen peroxide levels, and lower survival rates; Prdx6-/- mice had significantly lower survival rates, more severe tissue damage, and higher protein oxidation levels. Additionally, there were no differences in the mRNA expression levels of other peroxiredoxins, glutathione peroxidases, catalase, superoxide dismutases, thioredoxins, and glutaredoxins between normal Prdx6-/- and Prdx6+/+ mice and those injected with paraquat. Our study provides in vivo evidence that PRDX6 is a unique non-redundant antioxidant that functions independently of other peroxiredoxins and antioxidant proteins.  相似文献   

8.
Ath29 is an atherosclerosis susceptibility locus on chromosome 9 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate intercrosses that developed early or advanced atherosclerotic lesions. The objective of this study was to characterize Ath29 through construction and analysis of a congenic strain and identify underlying candidate genes. A congenic line was constructed by introgressing the chromosomal segment harboring Ath29 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Congenic mice developed significantly smaller early and advance atherosclerotic lesions than B6.apoE(-/-) mice. Microarray analysis revealed 317 genes to be differentially expressed in the aorta of congenic mice compared with B6.apoE(-/-) mice. Pathway analysis of these genes suggested the Ca(2+) signaling pathway to be implicated in regulating atherosclerosis susceptibility. Rcn2 is located underneath the linkage peak of Ath29 and involved in Ca(2+) signaling. Multiple single-nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Rcn2 with one single-nucleotide polymorphism falling within an upstream cAMP response element. Immunostaining demonstrated its expression in atherosclerotic lesions. Knockdown of Rcn2 with small interfering RNAs resulted in significant reductions in both baseline and oxidized phospholipid-induced VCAM-1 and monocyte chemoattractant protein-1 expression by endothelial cells. Ath29 is confirmed to be a major atherosclerosis susceptibility locus affecting both early and advanced lesion formation in mice, and Rcn2 is identified as a novel regulator of cytokine expression.  相似文献   

9.
Traumatic brain injury (TBI) patients would benefit from the identification of reliable biomarkers to predict outcomes and treatment strategies. In our study, cerebrospinal fluid (CSF) from patients with severe TBI was evaluated for oxidant stress-mediated damage progression after hospital admission and subsequent ventriculostomy placement. Interestingly, substantial levels of peroxiredoxin VI (Prdx6), a major antioxidant enzyme normally found in astrocytes, were detected in CSF from control and TBI patients and were not associated with blood contamination. Functionally, Prdx6 and its associated binding partner glutathione S-transferase Pi (GSTP1-1, also detected in CSF) act in tandem to detoxify lipid peroxidation damage to membranes. We found Prdx6 was fully active in CSF of control patients but becomes significantly inactivated (oxidized) in TBI. Furthermore, significant and progressive oxidation of “buried” protein thiols in CSF of TBI patients (compared to those of nontrauma controls) was detected over a 24-h period after hospital admission, with increased oxidation correlating with severity of trauma. Conversely, recovery of Prdx6 activity after 24 h indicated more favorable patient outcome. Not only is this the first report of an extracellular form of Prdx6 but also the first report of its detection at a substantial level in CSF. Taken together, our data suggest a meaningful correlation between TBI-initiated oxidation of Prdx6, its specific phospholipid hydroperoxide peroxidase activity, and severity of trauma outcome. Consequently, we propose that Prdx6 redox status detection has the potential to be a biomarker for TBI outcome and a future indicator of therapeutic efficacy.  相似文献   

10.
Previous studies have unraveled that peroxiredoxin 2 (Prdx2) inhibits atherogenesis in mice, whereas its role in macrophage lipid accumulation or the underlying mechanisms remain unknown. THP-1 monocyte-derived foam cells were transfected with Prdx2-overexpressing plasmid vectors (pcDNA3.1-Prdx2) or Prdx2 siRNA. The expression of ABCA1, NF-κB p65 and miR-33a were detected by RT-PCR and Western blotting. Percentage of cholesterol efflux was evaluated by liquid scintillation counting. Cellular lipid droplets were assessed using Oil Red O staining. Intracellular cholesterol contents were measured using high performance liquid chromatography (HPLC). Furthermore, cells were pre-treated with NF-κB inhibitor PDTC and/or miR-33a inhibitor, followed by detection of the indices above. The results showed that overexpression of Prdx2 in THP-1 monocyte-derived foam cells significantly increased ABCA1 expression and the percentage of [3H]-cholesterol efflux to apoA-1 (P<0.05), whereas NF-κB p65 and miR-33a levels as well as lipid accumulation were decreased (P<0.05). After pre-treatment with PDTC and/or miR-33a inhibitor, these effects were more obvious (P<0.05). In contrast, silencing of Prdx2 significantly diminished ABCA1 expression and increased NF-κB p65 and miR-33a levels. At last, we found that Prdx2 overexpression obviously down-regulated the ROS level in THP-1 monocyte-derived foam cells. Altogether, Prdx2 promotes macrophage cholesterol efflux and inhibits intracellular lipid accumulation through the ROS-NF-κB-miR-33a-ABCA1 pathway.  相似文献   

11.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   

12.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

13.
《Free radical research》2013,47(10):836-846
Abstract

Oxidative stress triggered by amyloid beta (Aβ) accumulation contributes substantially to the pathogenesis of Alzheimer's disease (AD). In the present study, we examined the involvement of the antioxidant activity of peroxiredoxin 6 (Prdx 6) in protecting against Aβ25–35-induced neurotoxicity in rat PC12 cells. Treatment of PC12 cells with Aβ25-35 resulted in a dose- and time-dependent cytotoxicity that was associated with increased accumulation of intracellular reactive oxygen species (ROS) and mitochondria-mediated apoptotic cell death, including activation of Caspase 3 and 9, inactivation of poly ADP-ribosyl polymerse (PARP), and dysregulation of Bcl-2 and Bax. This apoptotic signaling machinery was markedly attenuated in PC12 cells that overexpress wild-type Prdx 6, but not in cells that overexpress the C47S catalytic mutant of Prdx 6. This indicates that the peroxidase activity of Prdx 6 protects PC12 cells from Aβ25-35-induced neurotoxicity. The neuroprotective role of the antioxidant Prdx 6 suggests its therapeutic and/or prophylactic potential to slow the progression of AD and limit the extent of neuronal cell death caused by AD.  相似文献   

14.
Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe ?/? mice transplanted with bone marrow from prdx1?/?apoe?/? mice had increased plaque formation compared with apoe?/? BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.  相似文献   

15.
Peroxiredoxin-3 (Prdx3) is a mitochondrial member of the antioxidant family of thioredoxin peroxidases that uses mitochondrial thioredoxin-2 (Trx2) as a source of reducing equivalents to scavenge hydrogen peroxide (H(2)O(2)). Low levels of H(2)O(2) produced by the mitochondria regulate physiological processes, including cell proliferation, while high levels of H(2)O(2) are toxic to the cell and cause apoptosis. WEHI7.2 thymoma cells with stable overexpression of Prdx3 displayed decreased levels of cellular H(2)O(2) and decreased cell proliferation without a change in basal levels of apoptosis. Prdx3-transfected cells showed a marked resistance to hypoxia-induced H(2)O(2) formation and apoptosis. Prdx3 overexpression also protected the cells against apoptosis caused by H(2)O(2), t-butylhydroperoxide, and the anticancer drug imexon, but not by dexamethasone. Thus, mitochondrial Prdx3 is an important cellular antioxidant that regulates physiological levels of H(2)O(2), leading to decreased cell growth while protecting cells from the apoptosis-inducing effects of high levels of H(2)O(2).  相似文献   

16.
Overexpression of peroxiredoxin 6 (Prdx6) has been shown to protect lungs of mice against hyperoxia-mediated injury. In this study, we evaluated whether genetic inactivation of Prdx6 in mice increases sensitivity to oxygen toxicity. We evaluated mouse survival, lung histopathology, total protein and nucleated cells in bronchoalveolar lavage fluid (BALF), and oxidation of lung protein and lipids by measurement of protein carbonyls and thiobarbituric reactive substances (TBARS), respectively. The duration of survival for Prdx6 -/- mice was significantly shorter than that observed in wild-type mice on exposure to 85 or 100% O(2); survival of Prdx6 +/- mice was intermediate. After 72-h exposure to 100% O(2), lungs of Prdx6-/- mice showed more severe injury than wild-type with increased wet/dry weight, epithelial cell necrosis and alveolar edema on microscopic examination, increased protein and nucleated cells in BALF, and higher content of TBARS and protein carbonyls in lung homogenate. These findings show that Prdx6 -/- mice have increased sensitivity to hyperoxia and provide in vivo evidence that Prdx6 is an important lung antioxidant enzyme.  相似文献   

17.
Chen L  Na R  Gu M  Salmon AB  Liu Y  Liang H  Qi W  Van Remmen H  Richardson A  Ran Q 《Aging cell》2008,7(6):866-878
H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase localized in mitochondria. To understand the cellular and physiological roles of mitochondrial H(2)O(2) in aging and pathogenesis of age-associated diseases, we generated transgenic mice overexpressing Prdx3 (Tg(PRDX3) mice). Tg(PRDX3) mice overexpress Prdx3 in a broad range of tissues, and the Prdx3 overexpression occurs exclusively in the mitochondria. As a result of increased Prdx3 expression, mitochondria from Tg(PRDX3) mice produce significantly reduced amount of H(2)O(2), and cells from Tg(PRDX3) mice have increased resistance to stress-induced cell death and apoptosis. Interestingly, Tg(PRDX3) mice show improved glucose homeostasis, as evidenced by their reduced levels of blood glucose and increased glucose clearance. Tg(PRDX3) mice are also protected against hyperglycemia and glucose intolerance induced by high-fat diet feeding. Our results further show that the inhibition of GSK3 may play a role in mediating the improved glucose tolerance phenotype in Tg(PRDX3) mice. Thus, our results indicate that reduction of mitochondrial H(2)O(2) by overexpressing Prdx3 improves glucose tolerance.  相似文献   

18.
It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS‐induced tumorigenesis. Prdx1 ablation increased the susceptibility to Ras‐induced breast cancer. We, therefore, investigated the role of Prdx1 in regulating oncogenic Ras effector pathways. We found Akt hyperactive in fibroblasts and mammary epithelial cells lacking Prdx1. Investigating the nature of such elevated Akt activation established a novel role for Prdx1 as a safeguard for the lipid phosphatase activity of PTEN, which is essential for its tumour suppressive function. We found binding of the peroxidase Prdx1 to PTEN essential for protecting PTEN from oxidation‐induced inactivation. Along those lines, Prdx1 tumour suppression of Ras‐ or ErbB‐2‐induced transformation was mediated mainly via PTEN.  相似文献   

19.
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.  相似文献   

20.
Oxidative stress has been implicated in various aspects of aging, but the role of oxidative stress in ovarian aging remains unclear. Our previous studies have shown that the initiation of apoptotic cell death in ovarian follicles and granulosa cells by various stimuli is initiated by increased reactive oxygen species. Herein, we tested the hypothesis that ovarian antioxidant defenses decrease and oxidative damage increases with age in mice. Healthy, wild-type C57BL/6 female mice aged 2, 6, 9, or 12 mo from the National Institute on Aging Aged Rodent Colony were killed on the morning of metestrus. Quantitative real-time RT-PCR was used to measure ovarian mRNA levels of antioxidant genes. Immunostaining using antibodies directed against 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used to localize oxidative lipid, protein, and DNA damage, respectively, within the ovaries. TUNEL was used to localize apoptosis. Ovarian expression of glutathione peroxidase 1 (Gpx1) increased and expression of glutaredoxin 1 (Glrx1), glutathione S-transferase mu 2 (Gstm2), peroxiredoxin 3 (Prdx3), and thioredoxin 2 (Txn2) decreased in a statistically significant manner with age. Statistically significant increases in 4-HNE, NTY, and 8-OHdG immunostaining in ovarian interstitial cells and follicles were observed with increasing age. Our data suggest that the decrease in mRNA expression of mitochondrial antioxidants Prdx3 and Txn2 as well as cytosolic antioxidants Glrx1 and Gstm2 may be involved in age-related ovarian oxidative damage to lipid, protein, DNA, and other cellular components vital for maintaining ovarian function and fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号