首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究人胸苷激酶 (humanthymidinekinase ,hTK)基因在复制衰老细胞及早衰细胞中表达下调的分子机制 ,构建了含hTK启动子的荧光素酶报告基因载体 .转染结果显示 ,复制衰老细胞与早衰细胞中hTK启动子的转录活性比年轻细胞中下降了近 3倍 ,表明转录水平的调控是hTK在衰老细胞中表达下降的主要调控机制 .定点突变的结果显示 ,转录因子Sp1、NF Y结合位点的突变可使hTK启动子活性降低近 5 0 % ,而E2F结合位点的突变可使其活性升高 2倍多 ,提示Sp1和NF Y是hTK基因的转录活化因子 ,而E2F为转录抑制因子 .电泳迁移率变更实验发现 ,与年轻细胞相比 ,Sp1、NF Y与hTK启动子的DNA结合活性在复制衰老细胞和早衰细胞中无明显改变 ,提示转录活化因子Sp1、NF Y并非hTK在衰老细胞中下调的主要因素 .染色质免疫共沉淀结果显示 ,在细胞内Rb结合在hTK启动子上 ,且同年轻细胞相比 ,复制衰老细胞及早衰细胞中的hTK启动子结合着更多的Rb ,这提示细胞衰老过程中Rb的去磷酸化可能与hTK基因在衰老过程中的下调有关 .  相似文献   

2.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

3.
Jang SY  Kim SY  Bae YS 《FEBS letters》2011,585(21):3360-3366
Cellular senescence is thought to be an important tumor suppression process in vivo. We have previously shown that p53 activation is necessary for CKII inhibition-mediated cellular senescence. Here, CKII inhibition induced acetylation of p53 at K382 in HCT116 and HEK293 cells. This acetylation event was suppressed by SIRT1 activation. CKIIα and CKIIβ were co-immunoprecipitated with SIRT1 in a p53-independent manner. Maltose binding protein pull-down and yeast two-hybrid indicated that SIRT1 bound to CKIIβ, but not to CKIIα. CKII inhibition reduced SIRT1 activity in cells. CKII phosphorylated and activated human SIRT1 in vitro. Finally, SIRT1 overexpression antagonized CKII inhibition-mediated cellular senescence. These results reveal that CKII downregulation induces p53 stabilization by negatively regulating SIRT1 deacetylase activity during senescence.  相似文献   

4.
5.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

6.
The proteasome constitutes the main non-lysosomal cellular protease activity, and plays a crucial role not only in the disposal of unwanted material, but also in the regulation of numerous cellular processes. Previously, we have reported that during the replicative senescence of WI-38 fibroblasts there is a significant impairment in proteasome activity, which probably has important implications in the control of MAPK signaling and cellular proliferation. In this study, we report the potential role of the proteasome in the generation of the senescent phenotype in WI-38 fibroblasts. Our results indicate that inhibition of proteasome activity leads to an impairment in cell proliferation, and a shortening of the life span. The results also indicate that inhibition of the proteasome in young cells induces a premature senescent-like phenotype, as indicated by the increase in senescence-associated beta-galactosidase (SA beta-gal) activity and the abundance of both p21 and collagenase mRNAs, as well as a decreased level of EPC-1 mRNA known markers of cellular senescence, not previously shown to depend on proteasome activity. Together, our results suggest a molecular mechanism for the lack of responsiveness of human cells to growth factors, and point towards a role for the proteasome in the control of the life span of both cells and organisms.  相似文献   

7.
Sirtuins (SIRT) belonging to the NAD+ dependent histone deacetylase III class of enzymes have emerged as master regulators of metabolism and longevity. However, their role in prevention of organismal aging and cellular senescence still remains controversial. In the present study, we now report upregulation of SIRT2 as a specific feature associated with stress induced premature senescence but not with either quiescence or cell death. Additionally, increase in SIRT2 expression was noted in different types of senescent conditions such as replicative and oncogene induced senescence using multiple cell lines. Induction of SIRT2 expression during senescence was dependent on p53 status as depletion of p53 by shRNA prevented its accumulation. Chromatin immunoprecipitation revealed the presence of p53 binding sites on the SIRT2 promoter suggesting its regulation by p53, which was also corroborated by the SEAP reporter assay. Overexpression or knockdown of SIRT2 had no effect on stress induced premature senescence, thereby indicating that SIRT2 increase is not a cause of senescence; rather it is an effect linked to senescence-associated changes. Overall, our results suggest SIRT2 as a promising marker of cellular senescence at least in cells with wild type p53 status.  相似文献   

8.
Telomere attrition, DNA damage and constitutive mitogenic signaling can all trigger cellular senescence in normal cells and serve as a defense against tumor progression. Cancer cells may circumvent this cellular defense by acquiring genetic mutations in checkpoint proteins responsible for regulating permanent cell cycle arrest. A small family of tumor suppressor genes encoding the retinoblastoma susceptibility protein family (Rb, p107, p130) exerts a partially redundant control of entry into S phase of DNA replication and cellular proliferation. Here we report that activation of the p53-dependent DNA damage response has been found to accelerate senescence in human prostate cancer cells lacking a functional Rb protein. This novel form of irradiation-induced premature cellular senescence reinforces the notion that other Rb family members may compensate for loss of Rb protein in the DNA damage response pathway. Consistent with this hypothesis, depletion of p107 potently inhibits the irradiation-induced senescence observed in DU145 cells. In contrast, p130 depletion triggers a robust and unexpected form of premature senescence in unirradiated cells. The dominant effect of depleting both p107 and p130, in the absence of Rb, was a complete blockade of irradiation-induced cellular senescence. Onset of the p107-dependent senescence was temporally associated with p53-mediated stabilization of the cyclin-dependent kinase inhibitor p27 and decreases in c-myc and cks1 expression. These results indicate that p107 is required for initiation of accelerated cellular senescence in the absence of Rb and introduces the concept that p130 may be required to prevent the onset of terminal growth arrest in unstimulated prostate cancer cells lacking a functional Rb allele.  相似文献   

9.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

10.
11.
Proteasome modulates mitochondrial function during cellular senescence   总被引:1,自引:0,他引:1  
Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidence that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype, and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence has significant effects on intra- and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production, and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a prooxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo.  相似文献   

12.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cells exhibited senescent-morphological features, irreversible G1 cell cycle arrest and irreversible senescence-associated beta-galactosidase positivity. The appearance of these cellular senescence markers was accompanied by significant increases of p21, gadd45 expression and p53 binding activity, as well as a significant decline in DNA repair capability and accelerated telomere shortening. Our results suggest that multiple pathways might be involved in oxidative SIPS, including genes related to DNA-damage-and-repair and telomere shortening, and that SIPS shares the same mechanisms with replicative senescence in vivo. Our findings indicate that several aging theories can be merged together by a common mechanism of oxidative damage, and that the level of oxidative DNA-damage-and-repair capacity may be exploited as reliable markers of cell senescence.  相似文献   

13.
We tested the long-term effects of sublethal oxidative stresses on replicative senescence. WI-38 human diploid fibroblasts (HDFs) at early cumulative population doublings (CPDs) were exposed to five stresses with 30 microM tert-butylhydroperoxide (t-BHP). After at least 2 d of recovery, the cells developed biomarkers of replicative senescence: loss of replicative potential, increase in senescence-associated beta-galactosidase activity, overexpression of p21(Waf-1/SDI-1/Cip1), and inability to hyperphosphorylate pRb. The level of mRNAs overexpressed in senescent WI-38 or IMR-90 HDFs increased after five stresses with 30 microM t-BHP or a single stress under 450 microM H(2)O(2). These corresponding genes include fibronectin, osteonectin, alpha1(I)-procollagen, apolipoprotein J, SM22, SS9, and GTP-alpha binding protein. The common 4977 bp mitochondrial DNA deletion was detected in WI-38 HDFs at late CPDs and at early CPDs after t-BHP stresses. In conclusion, sublethal oxidative stresses lead HDFs to a state close to replicative senescence.  相似文献   

14.
Normal human fibroblasts undergo a limited number of divisions in culture and progressively they reach a state of irreversible growth arrest, a process termed as replicative senescence. The proteasome is the major cellular proteolytic machinery, the function of which is impaired during replicative senescence. However, the exact causes of its malfunction in these conditions are unknown. Using WI38 fibroblasts as a model for cellular senescence we have observed reduced levels of proteasomal peptidase activities coupled with increased levels of both oxidized and ubiquitinated proteins in senescent cells. We have found the catalytic subunits of the 20 S complex and subunits of the 19 S regulatory complex to be down-regulated in senescent cells. This is accompanied by a decrease in the level of both 20 S and 26 S complexes. Partial inhibition of proteasomes in young cells caused by treatment with specific inhibitors induced a senescence-like phenotype, thus demonstrating the fundamental importance of the proteasome for retaining cellular maintenance and homeostasis. Stable overexpression of beta1 and beta5 subunits in WI38 established cell lines was shown to induce elevated expression levels of beta1 subunit in beta5 transfectants and vice versa. Transfectants possess increased proteasome activities and most importantly, increased capacity to cope better with various stresses. In summary these data demonstrate the central role of the proteasome during cellular senescence and survival as well as provide insights toward a better understanding of proteasome regulation.  相似文献   

15.
Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3-5). Mutation of either p19ARF or p53 alleviates Ras-induced senescence and facilitates oncogenic transformation by Ras. Here we report that, whereas Rb and p107 are each dispensable for Ras-induced replicative arrest, simultaneous ablation of both genes disrupts Ras-induced senescence and results in unrestrained proliferation. This occurs despite activation by Ras of the p19ARF /p53 pathway, identifying pRb and p107 as essential mediators of Ras-induced antiproliferative p19ARF/p53 signalling. Unexpectedly, in contrast to p19ARF or p53 deficiency, loss of Rb/p107 function does not result in oncogenic transformation by Ras, as Ras-expressing Rb-/-/p107-/- fibroblasts fail to grow anchorage-independently in vitro and are not tumorigenic in vivo. These results demonstrate that in the absence of both Rb and p107 cells are resistant to p19ARF/p53-dependent protection against Ras-induced proliferation, and uncouple escape from Ras-induced premature senescence from oncogenic transformation.  相似文献   

16.
17.
Zhang W  Chan HM  Gao Y  Poon R  Wu Z 《EMBO reports》2007,8(10):952-958
  相似文献   

18.
Different telomere damage signaling pathways in human and mouse cells   总被引:24,自引:0,他引:24  
Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of TRF2 from human telomeres and the ensuing de-protection of chromosome ends induced immediate premature senescence. Although the telomeric tracts remained intact, the TRF2(DeltaBDeltaM)-induced premature senescence was indistinguishable from replicative senescence and could be mediated by either the p53 or the p16/RB pathway. Telomere de-protection also induced a growth arrest and senescent morphology in mouse cells. However, in this setting the loss of p53 function was sufficient to completely abrogate the arrest, indicating that the p16/RB response to telomere dysfunction is not active in mouse cells. These findings reveal a fundamental difference in telomere damage signaling in human and mouse cells that bears on the use of mouse models for the telomere tumor suppressor pathway.  相似文献   

19.
20.
Zhang W  Ji W  Yang J  Yang L  Chen W  Zhuang Z 《Life sciences》2008,83(13-14):475-480
DNA methylation is considered to play an essential role in cellular senescence. To uncover the mechanism underlying cellular senescence, we established the model of premature senescence induced by hydrogen peroxide (H(2)O(2)) in human embryonic lung fibroblasts and investigated the changes of genome methylation, DNA methyltransferases (DNMTs) and DNA-binding domain proteins (MBDs) in comparison with those observed during normal replicative senescence. We found that premature senescence triggered by H(2)O(2) exhibited distinct morphological characteristics and proliferative capacity which were similar to those of replicative senescence. The genome methylation level decreased gradually during the premature as well as replicative senescence, which was associated with the reduction in the expression of DNMT1, reflecting global hypomethylation as a distinct feature of senescent cells. The levels of DNMT3b and methyl-CpG binding protein 2 (MeCP2) increased in both mid-aged and replicative senescent cells, while DNMT3a and MBD2 were upregulated in the mid-aged cells. Only DNMT3b was elevated in the cells in the premature senescence persistence status. Additionally, the expression for DNMTs, MBD2 and MeCP2 was increased rapidly upon H(2)O(2) treatment. These results indicate that H(2)O(2)-induced premature senescence share some features of replicative senescence, such as basic biological characteristics and global hypomethylation while there are slight differences in the profile of methylation-associated enzyme expression. Oxidative damage may hence be a causative factor in epigenetic alteration partly responsible for cellular senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号