首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergillus niger lipases are important biocatalysts for a broad range of industrial applications. To enhance the expression level of a newly cloned lipase gene lip2 of A. niger in Pichia pastoris, we applied codon optimization and synthesized the full length codon-optimized gene by a two-step gene synthesis strategy. This strategy consists of an assembly PCR for several small DNA fragments and enzymatic digestion and ligation steps to ligate these fragments into the full-length gene. First, the full-length lip2 gene was divided into three fragments F1 (237 bp), F2 (238 bp) and F3 (422 bp) with the additions of proper restriction sites, and separately amplified by assembly PCR reactions. Second, three PCR amplified fragments were digested and ligated into the full-length lip2 gene. In the two-step gene synthesis, synthesis of smaller DNA fragments resulted in a significant lower level of nonspecific mismatching among oligonucleotides and a very low mutational rate of the PCR products, demonstrating the superiority of the method. When compared with the originally cloned lip2 gene of A. niger, the new codon optimized lip2 gene expressed at a significantly higher level in yeasts after methanol induction for 72 h, and both the enzyme activity and protein content reached maximal levels of 191 U/ml and 154 mg/1, with 11.6- and 5.3-fold increases, respectively.  相似文献   

2.
Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are ~500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5–7 days) and suitable for synthesizing long segments of DNA (5–6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.  相似文献   

3.
Yang SS  Liu ZW  Yi XP  Zhang AL  Zhang TY  Luo JX  Zhang ZH  Shen JC  Yin HX  Chen LP 《Gene》2012,491(1):49-52
The present study reports the cloning and sequencing of lac2 from Bacillus subtilis. The gene is composed of 1542 bp and encodes a 514-amino acid protein. The gene has 86% homology with a published laccase with GeneID 936023. The lac2 gene was deposited in GenBank as a new nucleotide sequence. This new sequence was cloned into the multiple cloning site of pPIC9K to generate pPIC9K-lac2, which was then transformed into Pichia pastoris GS115 via electroporation. The recombinant GS115 (pPIC9K-lac2) was grown initially in BMGY medium and transferred to BMMY to induce gene expression for 48 h. The recombinant Lac2 protein shows laccase activity with α-naphthol and guaiacol as substrates. The optimal pH is between 3.2 and 4.7, and the optimal temperature is 25 °C for enzyme reaction.  相似文献   

4.
Phytase is widespread in nature. It has been used as a cereal feed additive that can enhance the phosphorus and mineral absorption in monogastric animals to reduce the level of phosphorus output in manure. Phytase of Peniophora lycii is a 6′-phytase, which owns high specific activity. To achieve a high expression level of 6′-phytase in Pichia pastoris, the 1,230-bp phytase gene of P. lycii was synthesized and optimized for codon usage, G+C content, as well as mRNA secondary structures. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the synthetic signal peptide (designated MF4I), which is a codon-modified Saccharomyces cerevisiae mating factor α-prepro-leader sequence, were used to transform P. pastoris. The P. pastoris strain that expressed the modified phytase gene (phy-pl-sh) with MF4I sequence produced 12.2 g phytase per liter of fluid culture, with the phytase activity of 10,540 U ml−1. The yield of the modified phytase gene, with bias codon usage and MF4I signal, is 4.4 times higher than that of the wild type gene with MF4I signal and 13.6 times higher than that of the wild type gene with wild type S. cerevisiae signal. The recombinant phytase had one optimum pH (pH 4.5) and an optimum temperature of 50°C. The P. pastoris strain expressed the modified 6-phytase gene, with the MF4I signal peptide showing great potential as a commercial phytase production system.Electronic Supplementary MaterialSupplementary material is available for this article at  相似文献   

5.
6.
The INU1 gene (Accession number: JX073660) encoding exo-inulinase from Cryptococcus aureus HYA was cloned and characterized. The gene had an open reading frame (ORF) of 1653 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 551 amino acid residues of a protein with a putative signal peptide of 23 amino acids and the calculated molecular mass of 59.5 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP, FS and Q. It also had two conserved putative N-glycosylation sites. The inulinase from C. aureus HYA was found to be closely related to that from Kluyveromyces marxianus and Pichia guilliermondii. The inulinase gene without the signal sequence was subcloned into pPICZaA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum inulinase activity of 16.3 ± 0.24 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. The optimal temperature and pH for action of the enzyme were 50 °C and 5.0, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified recombinant inulinase.  相似文献   

7.
8.
Here we present a simple, highly efficient, universal automatic kinetics switch (AKS) gene synthesis method that enables synthesis of DNA up to 1.6 kbp from 1 nM oligonucleotide with just one polymerase chain reaction (PCR) process. This method eliminates the interference between the PCR assembly and amplification in one-step gene synthesis and simultaneously maximizes the amplification of emerged desired DNA by using a pair of flanked primers. In addition, we describe an analytical model of PCR gene synthesis based on the thermodynamics and kinetics of DNA hybridization. The kinetics difference between standard PCR amplification and one-step PCR gene synthesis is analyzed using this model and is validated using real-time gene synthesis with eight gene segments (318-1656 bp). The effects of oligonucleotide concentration, stringency of annealing temperature, annealing time, extension time, and PCR buffer conditions are examined systematically. Analysis of the experimental results leads to new insights into the gene synthesis process and aids in optimizing gene synthesis conditions. We further extend this method for multiplexing gene assembly with a total DNA length up to 5.74 kbp from 1 nM oligonucleotide.  相似文献   

9.
A novel gene of thermostable phytase, phyA, was isolated by polymerase chain reaction (PCR) techniques from Aspergillus aculeatus RCEF 4894. The full-length phyA gene comprises 1,404 bp and encodes 467 amino-acid residues, including a 19-residue putative N-terminal signal peptide. The phytase of A. aculeatus was a novel addition to the histidine-acid phosphatase family, as evidenced by both the conserved motifs RHGXRXP and HD in the amino-acid sequence, and 3D structure models. The recombinant phytase was overexpressed in Pichia pastoris, and its specific activity reached 3,000 U mL−1 at the optimum pH of 5.5. This recombinant, thermostable phytase was able to withstand temperatures of up to 90 °C for 10 min, with a loss of only 13.9% of initial enzymatic activity, and showed high activity with phytic-acid sodium salt at a pH range of 2.5–6.5. The broad pH optima and high thermostability of the phytase makes it a promising candidate for feed-pelleting applications.  相似文献   

10.
A representative sample of 69 species from all recognized infrafamilial taxa of the family Aizoaceae (angiosperms, eudicotyledons, Caryophyllales) was surveyed for the presence/absence of the rpoC1 intron. PCR fragments of the samples fall into two size classes: a long fragment of approximately 1200 bp, and a short fragment of approximately 500 bp which was found in all samples from the tribes Drosanthemeae and Ruschieae of subfamily Ruschioideae. The length difference of about 700 bp corresponds to the length of the intron (738 bp in tobacco). Sequencing of the short fragment from Monilaria moniliformis revealed the precise excision of the intron as found in a previous study of the cactus family. It is concluded that the intron lacks in all samples from the clade including the tribes Drosanthemeae and Ruschieae of subfamily Ruschioideae, thus providing valuable PCR-based, sequence- and morphology-independent evidence for the monophyly of this lineage.  相似文献   

11.
12.
Yang JK  Chen FY  Yan XX  Miao LH  Dai JH 《PloS one》2012,7(5):e36607
In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE) was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp) and Aspergillus niger phytase gene phyA (1404 bp). Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.  相似文献   

13.
14.
15.
The full-length (7816 bp) cDNA of Vitellogenin (Vtg) encoding 2560 aa with an estimated molecular mass of 287.743 kDa was cloned from the green mud crab Scylla paramamosain. Semi-quantitative PCR (sq-PCR) revealed a specific expression pattern of Sp-vtg gene in ovaries and hepatopancreas. With the development of ovaries, the expression level of Sp-vtg gene showed an increasing trend both in ovaries and hepatopancreas, and the expression level of Sp-vtg gene in hepatopancreas and ovary was stable after stage IV. By in situ hybridization, the positive signals of Sp-vtg gene were detected in the cytoplasm of oocytes in stage I, in the follicle cell and the surrounding of the nucleus in stage III, and in the nucleus in stage V. Furthermore, the signals become stronger with the later development stages of ovary. Moreover, in situ hybridization analysis revealed that positive signals of Sp-vtg gene are present in the hepatopancreatic tubule, and the signals increase during the development, becoming the strongest in stage V. Our results indicate that both ovaries and hepatopancreas are sites of Vitellogenin gene synthesis in S. paramamosain.  相似文献   

16.
17.
Stearoyl-CoA desaturase 1 (SCD1) is a rate limiting enzyme in the biosynthesis of monounsaturated fatty acids. It has been cloned from several species: Rattus norvegicus, Mus musculus, Homo Sapiens and Gallus gallus, but not from Anser anser. This study was conducted to isolate the SCD1 cDNA sequence and investigate the effect of overfeeding on SCD1 gene tissue expression in Landes goose. The complete cDNA is 3294 bp in length, with an ORF of 1.083 bp encoding a predicted polypeptide of 360 amino acids and 5′/3′-UTR of 74 and 2137 bp, respectively. Quantitative real time PCR (qPCR) was used to examine SCD1 expression in heart, liver, spleen, lung, kidney, gizzard, glandular stomach, intestine, crureus, pectoral muscle, hypothalamus and adipose tissue (abdominal fat) in both the overfed and control group. SCD1 mRNA was highly expressed in goose fatty liver, and the expression levels of SCD1 in liver and fat of overfeeding group were more than double that of the control group. During the overfeeding period, SCD1 expression in liver and adipose tissue reached the highest level after 70 days, but declined at 79 days. In the control group, after fasting 24 h, the expression level of SCD1 gene in tissues declined sharply. However, SCD1 gene expression in hypothalamus was unaffected. The results of this study provide a theoretical basis to study the relationship between SCD1 gene expression and the formation of fatty liver of Landes goose in response to overfeeding.  相似文献   

18.
Luo H  Huang H  Yang P  Wang Y  Yuan T  Wu N  Yao B  Fan Y 《Current microbiology》2007,55(3):185-192
A novel phytase gene appA, with upstream and downstream sequences from Citrobacter amalonaticus CGMCC 1696, was cloned by degenerate polymerase chain reaction (PCR), and thermal asymmetric interlaced (TAIL) PCR and was overexpressed in Pichia pastoris. Sequence analysis revealed one open reading frame that consisted of 1311 bp encoding a 436–amino-acid protein, which had a deduced molecular mass of 46.3 kDa. The phytase appA belongs to the histidine acid phosphatase family and exhibits the highest identity (70.1%) with C. braakii phytase. The gene was overexpressed in P. pastoris. The secretion yield of recombinant appA protein was accumulated to approximately 4.2 mg·mL−1, and the enzyme activity level reached 15,000 U·mL−1, which is higher than any previous reports. r-appA was glycosylated, as shown by Endo H treatment. r-appA was purified and characterized. The specific activity of r-appA for sodium phytate was 3548 U·mg−1. The optimum pH and temperature for enzyme activity were 4.5 and 55°C, respectively. r-appA was highly resistant to pepsin or trypsin treatment. This enzyme could be an economic and efficient alternative to the phytases currently used in the feed industry.  相似文献   

19.
TCAP (also known as titin-cap or telethonin) is one of the titin interacting Z-disk proteins involved in the regulation and development of normal sarcomeric structure. In this study, we cloned the cDNA and promoter sequences of porcine TCAP gene, which contained a 504 bp full-length coding region. Quantitative real-time PCR (qRT-PCR) analyses showed that porcine TCAP was highly expressed in the skeletal muscle, heart, and kidney. During postnatal muscle development, TCAP expression was down-regulated from 30 days to 120 days in Large White and Meishan pigs. One single nucleotide polymorphism c.334G>A in exon 2 of the TCAP gene was identified and detected by allele-specific primer-polymerase chain reaction (ASP-PCR). Association analysis revealed that the polymorphism had significant associations (P < 0.05 and P < 0.01) with some carcass traits. Analysis of the porcine TCAP promoter in different cell lines demonstrated that it is a muscle-specific promoter. In addition, we found that the porcine TCAP promoter can be activated by MyoD, MyoG and MEF2 in myotubes, which indicated that TCAP may play a role in the regulation of porcine skeletal muscle development. These findings provide useful information for the further investigation of the function of TCAP in porcine skeletal muscle.  相似文献   

20.
Zhao W  Zheng J  Zhou HB 《Bioresource technology》2011,102(16):7538-7547
The mannan endo-1,4-β-mannosidase gene man26A from Aspergillus niger CBS 513.88 was optimized according to the codon usage bias in Pichia pastoris and synthesized by splicing overlap extension PCR. It was successfully expressed in P. pastoris using constitutive expression vector pGAPzαA. The recombinant endo-beta-1,4-mannanase could work in an extremely board temperature range and over 30% relative activity were retained in the temperature range of 5-60 °C. The optimal pH value and temperature for activity were 5.0 and 45 °C, respectively. It was highly thermotolerant with a half-life time of 15 min at 90 °C. A novel fed-batch strategy was developed successfully for high cell-density fermentation and mannanase activity reached 5069 U/mL after cultivation for 56 h in 50 L fermenter. The broad working temperature range, high thermotolerance and efficient expression made this enzyme possible to be applied in food, animal feed and the production of biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号