首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioluminescence has been hypothesized as aposematic signalling, intersexual communication and a predatory strategy, but origins and relationships among bioluminescent beetles have been contentious. We reconstruct the phylogeny of the bioluminescent elateroid beetles (i.e. Elateridae, Lampyridae, Phengodidae and Rhagophthalmidae), analysing genomic data of Sinopyrophorus Bi & Li, and in light of our phylogenetic results, we erect Sinopyrophoridae Bi & Li, stat.n . as a clicking elaterid‐like sister group of the soft‐bodied bioluminescent elateroid beetles, that is, Lampyridae, Phengodidae and Rhagophthalmidae. We suggest a single origin of bioluminescence for these four families, designated as the ‘lampyroid clade’, and examine the origins of bioluminescence in the terminal lineages of click beetles (Elateridae). The soft‐bodied bioluminescent lineages originated from the fully sclerotized elateroids as a derived clade with clicking Sinopyrophorus and Elateridae as their serial sister groups. This relationship indicates that the bioluminescent soft‐bodied elateroids are modified click beetles. We assume that bioluminescence was not present in the most recent common ancestor of Elateridae and the lampyroid clade and it evolved among this group with some delay, at the latest in the mid‐Cretaceous period, presumably in eastern Laurasia. The delimitation and internal structure of the elaterid‐lampyroid clade provides a phylogenetic framework for further studies on the genomic variation underlying the evolution of bioluminescence.  相似文献   

2.
At 22°C the bioluminescence decay kinetics in the in vitro reaction catalysed by Vibrio harveyi luciferase in the presence of different aldehydes–-nonanal, decanal, tridecanal and tetradecanal did not follow the simple exponential pattern and could be fitted to a two-exponential process. One more principal distinction from the first-order kinetics is the dependence of the parameters on aldehyde concentration. The complex bioluminescence decay kinetics are interpreted in terms of a scheme, where bacterial luciferase is able to perform multiple turnovers using different flavin species to produce light. The initial phase of the bioluminescent reaction appears to proceed mainly with fully reduced flavin as the substrate while the final one results from the involvement of flavin semiquinone in the catalytic cycle.  相似文献   

3.
Endogenous reductants such as hydrogen sulfide and alkylthiols provided free radical scavenging systems during the early evolution of life. The development of oxygenic photosynthesis spectacularly increased oxygen levels, and ancient life forms were obliged to develop additional antioxidative systems. We develop here the hypothesis of how ``prototypical' bioluminescent reactions had a plausible role as an ancient defense against oxygen toxicity through their ``futile' consumption of oxygen. As oxygen concentrations increased, sufficient light would have been emitted from such systems for detection by primitive photosensors, and evolutionary pressures could then act upon the light emitting characteristics of such systems independently of their use as futile consumers of oxygen. Finally, an example of survival of this ancient mechanism in present-day bioluminescent bacteria (in the Euprymna scolopes–Vibrio fischeri mutualism) is discussed. Once increasing ambient oxygen levels reached sufficiently high levels, the use of ``futile' oxygen consumption became too bioenergetically costly, so that from this time the evolution of bioluminescence via this role was made impossible, and other mechanisms must be developed to account for the evolution of bioluminescence by a wide range of organisms that patently occurred after this (e.g., by insects). Received: 25 May 2000 / Accepted: 14 November 2000  相似文献   

4.
Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re‐organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within‐strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems.  相似文献   

5.
Bioluminescence is reported in members of 18 dinoflagellate genera. Species of dinoflagellates are known to have different bioluminescent signatures, making it difficult to assess the presence of particular species in the water column using optical tools, particularly when bioluminescent populations are in nonbloom conditions. A “universal” oligonucleotide primer set, along with species and genus‐specific primers specific to the luciferase gene were developed for the detection of bioluminescent dinoflagellates. These primers amplified luciferase sequences from bioluminescent dinoflagellate cultures and from environmental samples containing bioluminescent dinoflagellate populations. Novel luciferase sequences were obtained for strains of Alexandrium cf. catenella (Whedon et Kof.) Balech and Alexandrium fundyense Balech, and also from a strain of Gonyaulax spinifera (Clap. et Whitting) Diesing, which produces bioluminescence undetectable to the naked eye. The phylogeny of partial luciferase sequences revealed five significant clades of the dinoflagellate luciferase gene, suggesting divergence among some species and providing clues on their molecular evolution. We propose that the primers developed in this study will allow further detection of low‐light‐emitting bioluminescent dinoflagellate species and will have applications as robust indicators of dinoflagellate bioluminescence in natural water samples.  相似文献   

6.
Pyrocystis lunula Schütt is a unicellular photoautotrophic dinoflagellate, commonly found in marine environments, displaying circadian‐controlled bioluminescence. Because of this species' characteristics, effects of pollutants on bioluminescence in P. lunula may make for an easy and simple bioassay that would be valuable for toxicity testing and the protection of coastal resources. This study therefore investigated the short‐term effects of metals and organic pollutants on the recovery of the bioluminescent potential in P. lunula. Recovery of bioluminescence was strongly inhibited in a dose‐dependent manner by all reference contaminants tested, the system being most sensitive to copper and cadmium (4‐h IC50s 0.96 and 1.18 μM, respectively), followed by phenanthrene, lead, SDS, and nickel (4‐h IC50s 1.64, 12.8, 15.6, and 73.1 μM, respectively), whereas relatively high concentrations of phenol were needed to elicit a response (4‐h IC50 1.64 mM). Except for exposure to lead and nickel, the inhibitory effects of cadmium, copper, and all organic pollutants were reversible, with P. lunula recovering 80%–100% of its bioluminescence potential after a period of 72 h in uncontaminated medium. Our results show that the restoration of bioluminescence in P. lunula is sensitive to the reference contaminants tested and obtains highly reproducible results.  相似文献   

7.
Detection of very low light levels arising from individual cells of the naturally bioluminescent bacterium Vibrio fischeri as well as from a luminescence-marked Pseudomonas putida strain was achieved by the aid of two different camera systems. Using a liquid nitrogen-cooled slow-scan CCD (charge-coupled device) camera we were able to detect single-cell bioluminescence within 1 min, and the pictures obtained were of good resolution. In contrast, employing a photon-counting video camera we were able to detect bioluminescent cells within 10 seconds, but at the expense of spatial resolution. This study demonstrates the feasibility of microscopic single cell analysis employing bioluminescence as reporter system. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
A faster and simpler method to monitor the photoinactivation process of Escherichia coli involving the use of recombinant bioluminescent bacteria is described here. Escherichia coli cells were transformed with luxCDABE genes from the marine bioluminescent bacterium Vibrio fischeri and the recombinant bioluminescent indicator strain was used to assess, in real time, the effect of three cationic meso-substituted porphyrin derivatives on their metabolic activity, under artificial (40 W m−2) and solar irradiation (≈620 W m−2). The photoinactivation of bioluminescent E. coli is effective (>4 log bioluminescence decrease) with the three porphyrins used, the tricationic porphyrin Tri-Py+-Me-PF being the most efficient compound. The photoinactivation process is efficient both with solar and artificial light, for the three porphyrins tested. The results show that bioluminescence analysis is an efficient and sensitive approach being, in addition, more affordable, faster, cheaper and much less laborious than conventional methods. This approach can be used as a screening method for bacterial photoinactivation studies in vitro and also for the monitoring of the efficiency of novel photosensitizer molecules. As far as we know, this is the first study involving the use of bioluminescent bacteria to monitor the antibacterial activity of porphyrins under environmental conditions.  相似文献   

9.
Some living organisms produce visible light (bioluminescence) for intra- or interspecific visual communication. Here, we describe a remarkable bioluminescent adaptation in the marine snail Hinea brasiliana. This species produces a luminous display in response to mechanical stimulation caused by encounters with other motile organisms. The light is produced from discrete areas on the snail's body beneath the snail's shell, and must thus overcome this structural barrier to be viewed by an external receiver. The diffusion and transmission efficiency of the shell is greater than a commercial diffuser reference material. Most strikingly, the shell, although opaque and pigmented, selectively diffuses the blue-green wavelength of the species bioluminescence. This diffusion generates a luminous display that is enlarged relative to the original light source. This unusual shell thus allows spatially amplified outward transmission of light communication signals from the snail, while allowing the animal to remain safely inside its hard protective shell.  相似文献   

10.
Firefly luciferin–luciferase bioluminescence is known for its high quantum yield (41.0 ± 7.4%). Given this high quantum yield, application of this bioluminescence is expected to be useful in the field of clinical diagnostics. The kinetic profile of this bioluminescence exhibits an instant rise (<1 s) and a rapid decay in light emission (decreased to 42% after 5 s). In this study, we applied four enhancers including coenzyme A, inosine5′‐triphosphate sodium salt, sodium tripolyphosphate and potassium pyrophosphate to prolong light emission. When these enhancers were used, luminescence was only decreased to 89, 83, 87 and 82% after 5 s, respectively. These materials modified the kinetic profile of bioluminescence so that the luminescence is more suitable for clinical application. It becomes more suitable because they enable highly sensitive integration and simplification of a device by separating luminescence measurements from dispensing of reagents. Using these enhancers, we then developed a bioluminescent enzyme immunoassay (BLEIA) for hepatitis B virus surface antigen (HBsAg) that employed firefly luciferase as a labeling enzyme. We compared the results obtained from the HBsAg BLEIA method with the conventional chemiluminescent enzyme immunoassay method, and found a satisfactory correlation (r = 0.984, n = 118). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Bioluminescent fungi are widely distributed on land and most belong to the class Basidomycetes. Light of about 530 nm wavelength maximum is emitted continuously. The molecular basis for the light‐emitting process remains unclear. We investigated the characteristics of the bioluminescence using cultivated fruiting bodies of M. chlorophos. Only fresh fruiting bodies exhibited long‐lasting light emission; rapid decay of light emission was observed with frozen and freeze‐dried samples. Freeze‐dried samples can be stored at room temperature under dry conditions and may be useful for the isolation of luciferin. The light emission of the fresh fruiting bodies was maintained in various buffers at varying pH; it could be stopped with pH 4 acetate buffer and could be recovered at pH 6. The isolation of luciferin from the fresh fruiting bodies might be possible by the control of buffer pH. The effect of temperature on the light emission of fruiting bodies indicated that bioluminescence in M. chlorophos may involve enzymatic reaction(s). The solubilization of bioluminescent components from the fruiting bodies could not be achieved with various surfactants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Mesoscale eddies of the ocean (with a characteristic diameter of about 100 km and a life time-span of about several weeks) are habitats of plankton organisms, many of which are bioluminescent. The spatial heterogeneity of bioluminescence of the upper mixed layer associated with the impact of mesoscale eddies is poorly studied. The 45-year historical data set was retrieved, in order to select the bathy-photometric surveys carried out in the form of station grids and transects across eddies. Data from 71 expeditions deployed in 1966–2022 to the Atlantic Ocean, Indian Ocean and Mediterranean Sea basin were analyzed, in order for the spatial heterogeneity of bioluminescent fields to be elucidated across eddy fields. The stimulated bioluminescence intensity was characterized by the bioluminescent potential, which represented the maximal amount of radiant energy emitted in a given volume of water by bioluminescent organisms. The normalized bioluminescent potential over oceanographic station grids exhibited correlation with the eddy kinetic energy and zooplankton biomass (r = 0.8, at P = 0.001 and r = 0.7, at P = 0.05, respectively), in a broad range of energy and bioluminescence units (0.02–0.2 m2 s−2; 0.4–92.0 × 10−8 W cm−2 L−1, respectively). Overall, estimates of bioluminescent potential variability on the mesoscale contribute to the assessment of the multiple-scale variation of the bioluminescent field of the World Ocean.  相似文献   

13.
The pileus of Mycena chlorophos actively, spontaneously, and continuously emits green light. Molecular mechanisms underlying this bioluminescence remain unclear. We investigated light emitters in the pileus of M. chlorophos to determine the underlying mechanisms. High‐performance liquid chromatography–fluorescence–photodiode array–mass detection analyses showed that actively luminescent gills in the pileus exclusively and abundantly possessed riboflavin, riboflavin 5′‐monophosphate, and flavin adenine dinucleotide as green‐fluorescent components. These components were localized in the bioluminescent region of the gills at the microscopic level. Fluorescence spectra of these green‐fluorescent components and the gills were identical with the spectrum of gill bioluminescence (maximum emission wavelength, 525 nm). Thus, our results indicated that the possible light emitters in the pileus of M. chlorophos were riboflavin, riboflavin 5′‐monophosphate, and/or flavin adenine dinucleotide. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.

A modified Robbins device (MRD) has frequently been used as a model system to study adhesion and biofilm formation. This study investigates the reproducibility of attachment and whether a statistically significant gradient of adhesion exists along the 25 sampling ports of a MRD. A simple, quantitative, non‐destructive, bioluminescence assay was developed in order to measure attachment of bioluminescent P. veronii BL146bio cells to plastic discs of Thermanox? in newly modified Robbins devices (nMRD). No statistically significant difference in mean bioluminescence values occurred between pairs of nMRDs run in parallel, but there was a significant difference in bioluminescence values between different batches of bacteria (p < 0.05). Generalised Linear Modelling showed that the position of the sample disc influenced the numbers attaching. In 50% of devices a significant positive gradient of attachment occurred and bioluminescence values varied from disc 1 to disc 25 by 29.6–58.0%. In the other 50% of nMRDs there was a smaller, non‐significant gradient. A disc sampling regime was devised to take this gradient into account and used to prove a positive correlation between bioluminescence and numbers of viable P. veronii BL146bio cells during a 6h biofilm accumulation period.  相似文献   

15.
The chemical mechanisms underlying visible bioluminescence in the fungus Mycena chlorophos are not clear. A combination of dihydronicotinamide adenine dinucleotide phosphate (NADPH) and hispidin, which has been reported to increase the intensity of in vitro luminescence in crude cold‐water extracts prepared from the bioluminescent fruiting bodies of M. chlorophos, exhibited potential bioluminescence activation in the early bioluminescence stages, in which the bioluminescence was ultra‐weak, for living gills and luminescence activation for non‐bioluminescent gills, which was collapsed by freezing and subsequent thawing, at all bioluminescence stages. These abilities were not evident in considerably bioluminescent gills. These abilities were blocked by trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid, which were identified as in vivo bioluminescence‐activating components. Original bioluminescence and bioluminescence produced from the addition of trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid in living gills were almost completely inhibited by 10 mM NaN3, whereas the luminescence produced form the combination of NADPH and hispidin in thawed non‐bioluminescent and living gills at the early weak bioluminescence stages was not inhibited by 10 mM NaN3. Thus, the combination of NADPH and hispidin plays different roles in luminescence systems compared with essential bioluminescence systems, and the combination of NADPH and hispidin was not essential for visible bioluminescence in living gills.  相似文献   

16.
C Balny  J W Hastings 《Biochemistry》1975,14(21):4719-4723
An intermediate in the luciferase-catalyzed bioluminescent oxidation of FMNH2, isolated and purified by chromatography at -20degrees, was postulated to be an oxygenated reduced flavin-luciferase. Maintained and studied at -20 to -30degrees, this material exhibits a relatively weak fluorescence emission peaking about 505 nm when excited at 370 nm. It may comprise more than one species. Upon continued exposure to light at 370 nm, the intensity of this fluorescence increases, often by a factor of 5 or more, and its emission spectrum is blue shifted to a maximum at about 485 nm. Upon warming its fluorescence is lost and the fluorescence of flaving mononucleotide appears. If warming is carried out in the presence of a long chain aldehyde, bioluminescence occurs, with the appearance of a similar amount of flavine fluorescence. The bioluminescence yield is about the same with irradiated and nonirradiated samples. The bioluminescence emission spectrum corresponds exactly to the fluorescence emission spectrum of the intermediate formed by irradiation, implicating the latter as being structurally close to the emitting species in bioluminescence.  相似文献   

17.
The vast majority of pelagic bioluminescent organisms emit a blue light with emission maxima (λmax) ranging from 450 to 490 nm. Among the known outliers, the tomopterids (Annelida: Polychaeta) are usually described as yellow‐emitters (λmax = 565–570 nm) for which bioluminescence functions as a specific recognition signal. Here, we report the first data regarding the colours emitted by four different tomopterid species, Tomopteris pacifica, T. carpenteri, T. septentrionalis and T. planktonis. Surprisingly, T. planktonis is a blue‐emitter (λmax = 450 nm). Our pharmacological results on T. planktonis support cholinergic control, as recently demonstrated in the yellow‐emitter, T. helgolandica. Moreover, as revealed by epifluorescence microscopy, the light seems to be produced in both species from the same yellow‐pigmented parapodial glands. Despite these similarities, tomopterids express an unexpected diversity of bioluminescent colour patterns. This leads us to reassess the ecological value of bioluminescence within this group.  相似文献   

18.
We have examined aspects of the bioluminescence of 5 clones of Dissodinium, 1 clone of Pyrocystis acuta, 4 clones of Pyrocystis fusiformis, and 5 clones of Pyrocystis noctiluca. All clones produced the same color bioluminescence with an intensity peak near 474 nm. The in vivo emission spectra of these clones agreed with those previously determined, for 4 other species of marine dinoflagellates. The amount of light emitted by the dinoflagellates in scotophase when mechanically stimulated to exhaustion was determined for most of the clones. The largest species, P. noctiluca and P. fusiformis, emitted 37–89 × 109 photons cell?1 and 23–62 × 109 photons cell?1, respectively, about a thousand, times as much light as Gonyaulax species. Pyrocystis acuta emitted 3–6 × 109 photons cell?1. Three of the 5 clones of Dissodinium were bioluminescent. The range for 3 clones was 5–13 × 109 photons cell?1. All 5 clones of Dissodinium are morphologically distinct. Both the clones of Dissodinium and Pyrocystis produced much higher numbers of photons per cell nitrogen (ca. 7–50 times) than Gonyaulax polyedra or Pyrodinium bahamense. The data suggested that enzyme turnover occurred in the reactions producing light during mechanical stimulation of Dissodinium and Pyrocystis species.  相似文献   

19.
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light‐emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell‐based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light‐emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.  相似文献   

20.
Dinoflagellates are the most abundant protists that produce bioluminescence. Currently, there is an incomplete knowledge of the identity of bioluminescent species arising from inter‐ and intraspecific variability in bioluminescence properties. In this study, PCR primers were designed to amplify the dinoflagellate luciferase gene (lcf) from genetically distant bioluminescent species. One of the primer pairs was “universal,” whereas others amplified longer gene sequences from subsets of taxa. The primers were used to study the distribution of lcf and assess bioluminescence potential in dinoflagellate strains representing a wide variety of taxa as well as multiple strains of selected species. Strains of normally bioluminescent species always contained lcf even when they were found not to produce light, thus demonstrating the utility of this methodology as a powerful tool for identifying bioluminescent species. Bioluminescence and lcf were confined to the Gonyaulacales, Noctilucales, and Peridiniales. Considerable variation was observed among genera, or even species within some genera, that contained this gene. Partial sequences of lcf were obtained for the genera Ceratocorys, Ceratium, Fragilidium, and Protoperidinium as well as from previously untested species or gene regions of Alexandrium and Gonyaulax. The sequences revealed high variation among gene copies that obscured the boundaries between species or even genera, some of which could be explained by the presence of two genetic variants within the same species of Alexandrium. Highly divergent sequences within Alexandrium and Ceratium show a more diverse composition of lcf than previously known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号