首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Carbonic anhydrase inhibitors: sulfonamides as antitumor agents?   总被引:6,自引:0,他引:6  
Novel sulfonamide inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) were prepared by reaction of aromatic or heterocyclic sulfonamides containing amino, imino, or hydrazino moieties with N,N-dialkyldithiocarbamates in the presence of oxidizing agents (sodium hypochlorite or iodine). The N,N-dialkylthiocarbamylsulfenamido-sulfonamides synthesized in this way behaved as strong inhibitors of human CA I and CA II (hCA I and hCA II) and bovine CA IV (bCA IV). For the most active compounds, inhibition constants ranged from 10(-8) to 10(-9) M (for isozymes II and IV). Three of the derivatives belonging to this new class of CA inhibitors were also tested as inhibitors of tumor cell growth in vitro. These sulfonamides showed potent inhibition of growth against several leukemia, non-small cell lung, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines. With several cell lines. GI50 values of 10-75 nM were observed. The mechanism of antitumor action with the new sulfonamides reported here remains obscure, but may involve inhibition of CA isozymes which predominate in tumor cell membranes (CA IX and CA XII), perhaps causing acidification of the intercellular milieu, or inhibition of intracellular isozymes which provide bicarbonate for the synthesis of nucleotides and other essential cell components (CA II and CA V). Optimization of these derivatives from the SAR point of view, might lead to the development of effective novel types of anticancer agents.  相似文献   

2.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

3.
A series of heterocyclic mercaptans incorporating 1,3,4-thiadiazole- and 1,2,4-triazole rings have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiols showed inhibition constants in the range of 97 nM to 548 microM, against hCA II in the range of 7.9-618 microM, and against hCA IX in the range of 9.3-772 microM. Thiadiazoles were generally more active than triazoles against all investigated isozymes. Generally, the best inhibitors were the simple derivative 5-amino-1,3,4-thiadiazole-2-thiol and its N-acetylated derivative, which were anyhow at least two orders of magnitude less effective inhibitors when compared to the corresponding sulfonamides, acetazolamide, and its deacetylated derivative. An exception was constituted by 5-(2-pyridylcarboxamido)-1,3,4-thiadiazole-2-thiol, which is the first hCA I-selective inhibitor ever reported, possessing an inhibition constant of 97 nM against isozyme I, and being a 105 times less effective hCA II inhibitor, and 3154 times less effective hCA IX inhibitor. Thus, the thiol moiety may lead to effective CA inhibitors targeting isozyme I, whereas it is a less effective zinc-binding function for the design of CA II and CA IX inhibitors over the sulfonamide group.  相似文献   

4.
Polyfluorinated CAIs show very good inhibitory properties against different carbonic anhydrase (CA) isozymes, such as CA I, II, and IV, but such compounds have not been tested for their interaction with the transmembrane, tumor-associated isozyme CA IX. Thus, a series of such compounds has been obtained by attaching 2,3,5,6-tetrafluorobenzoyl- and 2,3,5,6-tetrafluorophenylsulfonyl- moieties to aromatic/heterocyclic sulfonamides possessing derivatizable amino moieties. Some of these compounds showed excellent CA IX inhibitory properties and also selectivity ratios favorable to CA IX over CA II, the other physiologically relevant isozyme with high affinity for sulfonamide inhibitors. The first subnanomolar and rather selective CA IX inhibitor has been discovered, as the 2,3,5,6-tetrafluorobenzoyl derivative of metanilamide showed an inhibition constant of 0.8 nM against hCA IX, and a selectivity ratio of 26.25 against CA IX over CA II. Several other low nanomolar CA IX inhibitors were detected among the new derivatives reported here. The reported derivatives constitute valuable candidates for the development of novel antitumor therapies based on the selective inhibition of tumor-associated CA isozymes.  相似文献   

5.
The inhibition of the last human carbonic anhydrase (CA, EC 4.2.1.1) isozyme (hCA XIV) discovered has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and zonisamide), as well as the sulfamate antiepileptic drug topiramate. The full-length hCA XIV is an enzyme showing a medium-low catalytic activity, quite similar to that of hCA XII, with the following kinetic parameters at 20 degrees C and pH 7.5, for the CO2 hydration reaction: k(cat) = 3.12 x 10(5) s(-1) and k(cat)/K(M) = 3.9 x 10(7) M(-1) s(-1). All types of activities have been detected for the investigated compounds, with several micromolar inhibitors, including zonisamide, topiramate, and simple sulfanilamide derivatives (K(I)-s in the range of 1.46-6.50 microM). In addition, topiramate and zonisamide were observed to behave as weak hCA XII inhibitors, while zonisamide was an effective hCA IX inhibitor (K(I) of 5.1 nM). Some benzene-1,3-disulfonamide derivatives or simple five-membered heteroaromatic sulfonamides showed K(I)-s in the range of 180-680 nM against hCA XIV, whereas the most effective of such inhibitors, including 3-chloro-/bromo-sulfanilamide, benzolamide-like, ethoxzolamide-like, and acetazolamide/methazolamide-like derivatives, showed inhibition constant in the range of 13-48 nM. The best hCA XIV inhibitor was aminobenzolamide (K(I) of 13 nM), but no CA XIV-selective derivatives were evidenced. There are important differences of affinity of these sulfonamides/sulfamates for the three transmembrane CA isozymes, with CA XII showing the highest affinity, followed by CA IX, whereas CA XIV usually showed the lowest affinity for these inhibitors.  相似文献   

6.
In addition to sulfonamides, metal complexing anions represent the second class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the mitochondrial isozyme CA V (of murine and human origin) with anions is reported here. Inhibition data of the cytosolic isozymes CA I and CA II as well as the membrane-bound isozyme CA IV with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, sulfamate, and sulfamidate and so on, are also provided for comparison. Isozyme V has an inhibition profile by anions completely different to those of CA I and IV, but similar to that of hCA II, which may have interesting physiological consequences. Similarly to hCA II, the mitochondrial isozymes show micro-nanomolar affinity for sulfonamides such as sulfanilamide and acetazolamide.  相似文献   

7.
A small library of N-hydroxysulfamides was synthesized by an original approach in order to investigate whether this zinc-binding function is efficient for the design of inhibitors targeting the cytosolic (hCA I and II) and transmembrane, tumor-associated (hCA IX and XII) isozymes of carbonic anhydrase (CA, EC 4.2.1.1). The parent derivative, N-hydroxysulfamide was a more potent inhibitor as compared to sulfamide or sulfamic acid against all isozymes, with inhibition constants in the range of 473 nM-4.05 microM. Its substituted n-decyl-, n-dodecyl-, benzyl-, and biphenylmethyl-derivatives were less inhibitory against hCA I (K(I)s in the range of 5.8-8.2 microM) but more inhibitory against hCA II (K(I)s in the range of 50.5-473 nM). The same situation was true for the tumor-associated isozymes, with K(I)s in the range of 353-790 nM against hCA IX and 372-874 nM against hCA XII. Some sulfamides/sulfamates possessing similar substitution patterns have also been investigated for the inhibition of these isozymes, being shown that in some particular cases sulfamides are more efficient inhibitors as compared to the corresponding sulfamates. Potent CA inhibitors targeting the cytosolic or tumor-associated CA isozymes can thus be designed from various classes of sulfonamides, sulfamides, or sulfamates and their derivatives, considering the extensive interactions in which the inhibitor and the enzyme active site are engaged, based on recent X-ray crystallographic data.  相似文献   

8.
The membrane-associated human isozyme of carbonic anhydrase, hCA IV, has been investigated for its interaction with anion inhibitors, for the CO(2) hydration reaction catalyzed by this enzyme. Surprisingly, halides were observed to act as potent hCA IV inhibitors, with inhibition constants in the range of 70-90 microM, although most of these ions, and especially fluoride, the best hCA IV inhibitor among the halides, are weak inhibitors of other isozymes, such as hCA I, II and V. The metal poisons cyanate, cyanide and hydrogen sulfide were weaker hCA IV inhibitors (K(i)'s in the range of 0.6-3.9 mM), whereas thiocyanate, azide, nitrate and nitrite showed even weaker inhibitory properties (K(i)'s in the range of 30.8-65.1 mM). Sulfate was a good hCA IV inhibitor (K(i) of 9 mM), although it is a much weaker inhibitor of isozymes I, II, V and IX. Excellent hCA IV inhibitory properties showed sulfamic acid, sulfamide, phenylboronic acid and phenylarsonic acid, with K(i)'s in the range of 0.87-0.93 microM, whereas their affinities for the other investigated isozymes were in the millimolar range. The interaction of some anions with the mitochondrial isozyme hCA V has also been investigated for the first time here. It has been observed that among all these isozymes, hCA V has the lowest affinity for bicarbonate and carbonate (K(i)'s in the range of 82-95 mM), which may represent an evolutionary adaptation of this isozyme to the rather alkaline environment (pH 8.5) within the mitochondria, where hCA V plays important functions in some biosynthetic reactions involving carboxylating enzymes (pyruvate carboxylase and acetyl coenzyme A carboxylase). There are important differences of affinity for anions between the two membrane-associated isozymes, hCA IV and hCA IX.  相似文献   

9.
A library of boron-containing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, including sulfonamides, sulfamides, and sulfamates is reported. The new compounds have been synthesized by derivatization reactions of 4-carboxy-/amino-/hydroxy-phenylboronic acid pinacol esters with amino/isothiocyanato-substituted aromatic/heteroaromatic sulfonamides or by sulfamoylation reactions with sulfamoyl chloride. The new derivatives have been assayed for the inhibition of three physiologically relevant CA isozymes, the cytosolic CA I and II, and the transmembrane, tumor-associated isozyme CA IX. Effective inhibitors were detected both among sulfonamides, sulfamates, and sulfamides. Against the human isozyme hCA I the new compounds showed inhibition constants in the range of 34-94nM, against hCA II in the range of 3.1-48nM, and against hCA IX in the range of 7.3-89nM, respectively. As hypoxic tumors highly overexpress CA IX, the design of boron-containing inhibitors with high affinity for the tumor-associated CA isozymes may lead to important advances in boron neutron capture therapy (BNCT) applications targeting such tumors, which are non-responsive to both classical chemo- and radiotherapy.  相似文献   

10.
The inhibition of the two transmembrane, tumor-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1) of human origin, hCA IX and XII, with a library of aromatic and heteroaromatic sulfonamides has been investigated. Most of them were sulfanilamide, homosulfanilamide, and 4-aminoethyl-benzenesulfonamide derivatives, to which tails that should induce diverse physico-chemical properties have been attached at the amino moiety, whereas several of these compounds were derived from metanilamide, benzene-1,3-disulfonamide or the 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides. The tails were of the alkyl/aryl-carboxamido/sulfonamido-, ureido or thioureido type. Against hCA IX the investigated compounds showed inhibition constants in the range of 3-294 nM, whereas against hCA XII in the range of 1.9-348 nM, respectively. The best hCA IX inhibitors were ureas/thioureas incorporating 4-aminoethyl-benzenesulfonamide and metanilamide moieties. The best hCA XII inhibitors were 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides incorporating 5-acylamido or 5-arylsulfonylamido moieties. These compounds also inhibited appreciably the cytosolic isozymes hCA I and II, but some selectivity for the transmembrane, tumor-associated isozymes was observed for some of them, which is an encouraging result for the design of novel therapies targeting hypoxic tumors, in which these carbonic anhydrases are highly overexpressed.  相似文献   

11.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme VII (hCA VII), has been investigated with a series of aromatic and heterocyclic sulfonamides, including some of the clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide and benzolamide), as well as the sulfamate antiepileptic drug topiramate. Inhibition data for the the other physiologically relevant cytosolic isoforms hCA I, hCA II and mCA XIII are also provided for comparison. hCA VII shows a high catalytic activity for the CO(2) hydration reaction, with a k(cat) of 9.5 x 10(5)s(-1) and k(cat)/K(m) of 8.3 x 10(7)M(-1)s(-1) at pH7.5 and 20 degrees C. A very interesting inhibition profile against hCA VII with this series of 32 sulfonamides/sulfamates was observed. hCA VII shows high affinity for all the investigated compounds, with inhibition constants in the range of 0.45-210 nM. Topiramate, ethoxzolamide and benzolamide showed subnanomolar hCA VII inhibitory activity, whereas acetazolamide, methazolamide, dorzolamide and brinzolamide showed K(I)-s in the range of 2.1-3.5 nM. Dichlorophenamide was slightly less active (K(I) of 26.5 nM). A number of heterocyclic or bicyclic aromatic sulfonamides also showed excellent hCA VII inhibitory properties (K(I)-s in the range of 4.3-7.0 nM) whereas many monosubstituted or disubstituted benzenesulfonamides were less active (K(I)-s in the range of 45-89 nM). The least active hCA VII inhibitors were some substituted benzene-1,3-disulfonamides as well as some halogenated sulfanilamides (K(I)-s in the range of 100-210 nM). The inhibition profile of hCA VII is rather different of that of the other cytosolic isozymes, providing thus a possibility for the design of more selective, hCA VII-specific inhibitors. In addition, these data furnish further evidence that hCA VII is the isozyme responsible for the anticonvulsant/antiepileptic activity of sulfonamides and sulfamates.  相似文献   

12.
A series of sulfonamides has been obtained by reacting sulfanilamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide with omega-chloroalkanoyl chlorides, followed by replacement of the omega-chlorine atom with secondary amines. Tails incorporating heterocyclic amines belonging to the morpholine, piperidine and piperazine ring systems have been attached to these sulfonamides, by means of an alkanoyl-carboxamido linker containing from two to five carbon atoms. The new derivatives prepared in this way were tested as inhibitors of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic isozymes CA I and II, and the catalytic domain of the transmembrane, tumor-associated isozyme CA IX. Several low nanomolar CA I and CA II inhibitors were detected both in the aromatic and heterocyclic sulfonamide series, whereas the best hCA IX inhibitors (inhibition constants in the range of 22-35 nM) all belonged to the acetazolamide-like derivatives.  相似文献   

13.
Abstract

Reaction of three aromatic sulfonamides possessing a primary amino group, i.e., sulfanilamide, homosulfanilamide and p-aminoethyl-benzenesulfonamide with heterocyclic and aromatic aldehydes afforded a series of Schiff bases. Metal complexes of some of these Schiff bases with divalent transition ions such as Zn(II), Cu(II), Co(II) and Ni(II) have also been obtained. The new compounds were assayed as inhibitors of three isozymes of carbonic anhydrase (CA). Several of the new compounds showed a modest selectivity for the membrane-bound (bovine) isozyme CA IV (bCA IV) as compared to the cytosolic human isozymes hCA I and II, in contrast to classical inhibitors which generally possess a 17-33 times lower affinity for bCA IV. This greater selectivity toward bCA IV is due mainly to a slightly decreased potency against hCA II relative to classical inhibitors. However, metal complexes of these Schiff bases possessed an increased affinity for hCA II, being less inhibitory against bCA IV. The first type of compounds reported here (i.e., the Schiff bases of aromatic sulfonamides with heterocyclic aldehydes) might thus lead to the development of low molecular weight isozyme specific CA IV inhibitors. The difference in affinity for the three isozymes of the inhibitors reported by us here is tentatively explained on the basis of recent X-ray crystallographic studies of these isozymes and their adducts with substratesiinhibitors  相似文献   

14.
A series of selected benzo[b]thiophene-5- and 6-sulfonamide derivatives previously reported to show cytotoxic activity and some others newly synthesized has been tested for the interactions with several CA isozymes, some of which are known to be involved in tumorigenesis (hCA IX), whereas others are ubiquitously found in many normal tissues (the cytosolic isoforms hCA I and II). The unsubstituted sulfonamides inhibited hCA I with inhibition constants in the range of 63-138 nM, hCA II with inhibition constants in the range of 6.3-8.8 nM, and hCA IX with inhibition constants in the range of 2.8-15 nM, being thus more active than clinically used inhibitors such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide or indisulam (E 7070). Some of these derivatives also showed some selectivity for the inhibition of the tumor-associated (hCA IX) over the cytosolic isozyme hCA II. Although these derivatives may act on many targets other than the CAs (such as the NADH oxidase) or may induce apoptosis by accumulation of reactive oxygen species, it is quite important to try to decipher as many as possible of the potential mechanisms that lead to derivatives with potent antitumor activity in order to develop novel therapeutic strategies for the management of cancer.  相似文献   

15.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

16.
A series of 2-substituted-1,3,4-thiadiazole-5-sulfamides was prepared and assayed as inhibitors of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, the membrane-associated CA IV and the mitochondrial CA VA and VB. The new compounds showed weak inhibitory activity against hCA I (K(I)s of 102 nM-7.42 microM), hCA II (K(I)s of 0.54-7.42 microM) and hCA IV (K(I)s of 4.32-10.05 microM) but were low nanomolar inhibitors of hCA VA and hCA VB, with inhibition constants in the range of 4.2-32 nM and 1.3-74 nM, respectively. Furthermore, the selectivity ratios for inhibiting the mitochondrial enzymes over CA II were in the range of 67.5-415, making these sulfamides the first selective CA VA/VB inhibitors.  相似文献   

17.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (K(I)s in the range of 1.5-5.7 microM), two derivatives were strong hCA II inhibitors (K(I)s in the range of 15-16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160-1950 nM and hCA XII with inhibition constants in the range 1.2-413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

18.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by ex vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides, only the membrane-bound enzyme (CA IV) was inhibited, whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, benzolamide, etc.) were used, unselective inhibition of all CA isozymes (I, II and IV) occurred.  相似文献   

19.
A series of aromatic/heterocyclic sulfonamides incorporating phenyl(alkyl), halogenosubstituted-phenyl- or 1,3,4-thiadiazole-sulfonamide moieties and thienylacetamido; phenacetamido and pyridinylacetamido tails were prepared and assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and hCA II, and the mitochondrial hCA VA and hCA VB. The new compounds showed moderate inhibition of the two cytosolic isoforms (KIs of 50–390 nM) and excellent inhibitory activity against the two mitochondrial enzymes, with many low nanomolar inhibitors detected (KIs in the range of 5.9–10.2 nM). All substitution patterns explored here lead to effective hCA VA/VB inhibitors. Some hCA VA/VB selective inhibitors were also detected, with selectivity ratios for inhibiting the mitochondrial over the cytosolic isozymes of around 55.5–56.9. As hCA VA/VB are involved in several biosynthetic processes catalyzed by pyruvate carboxylase, acetyl CoA carboxylase, and carbamoyl phosphate synthetases I and II, providing the bicarbonate substrate to these carboxylating enzymes involved in fatty acid biosynthesis, their selective inhibition may lead to the development of antiobesity agents possessing a new mechanism of action.  相似文献   

20.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisub-stituted-pyridinium-ethylcarboxy moieties (obtained from 2, 4, 6–trisubstituted-pyrylium salts and β-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by CJ vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides. only the membrane-bound enzyme (CA IV) was inhibited. whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, bcn-zolamíde. etc.) were used. unselective inhibition of all CA isozymes (I. II and IV) occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号