首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
溴甲烷土壤灭菌对大豆苗期根系生长的影响   总被引:9,自引:2,他引:7  
利用溴甲烷田间土壤灭菌,研究灭菌对正茬、重茬大豆苗期根系生长和产量的影响.试验结果表明,灭菌处理后重茬(连续种植3a)地大豆根系生长良好,根系形态明显改善,总根长、主根长、植株鲜重和根瘤数增加、孢囊线虫孢囊数为0.而灭菌处理后,正茬地大豆根系前期生长受到一定抑制,主根长、总根长、植株鲜重和侧根数有降低的趋势,但随时间推移,抑制幅度降低.溴甲烷处理促进大豆结瘤.灭菌后,重茬大豆与正茬大豆根系生长差异减少.溴甲烷灭菌处理可作为克服大豆连作障碍问题措施之一.  相似文献   

2.
The effects of the presence or absence of Mg in the nutrient solution and of vesicular-arbuscular mycorrhizal fungi (VAMF) on the content and partitioning of Ca, K and P between root and shoot of date palm (Phoenix dactylifera) seedlings were examined under greenhouse conditions using soil as basal medium. Mg content of the soil was 14.95 µmol/g dry soil. The infection percentages after inoculation of VAMF were 66.0% and 55.5%, respectively, on application of –Mg and +Mg nutrient solution. Ca content of both roots and shoots did not change by these treatments; but a highly significant decrease in shoots was recorded on –Mg and +VAMF treatment. K content of root was significantly elevated by –Mg and +VAMF treatment but no changes were observed in shoots. P content of both roots and shoots increased significantly with +VAMF regardless of the presence or absence of Mg.  相似文献   

3.
T. Olsen  M. Habte 《Mycorrhiza》1995,5(6):395-399
The interaction of Cajanus cajan with Rhizobium and vesicular-arbuscular mycorrhizal fungi (VAMF) was investigated in a greenhouse experiment. C. cajan was planted in soil that had been inoculated with Glomus aggregatum or treated with benlate to suppress VAMF activity. Initial soil solution P concentrations of 0.06, 0.2, 0.4, and 0.8 mg l-1 were established to test the interaction at external P levels that ranged from inadequate to nonlimiting for the host plant. At 0.06 and 0.2 mg P l-1, mycorrhizal inoculation significantly increased plant P concentrations as well as nodule numbers and shoot dry weight. Mycorrhizal inoculation also significantly increased nodule dry weight at a soil P concentration of 0.4 mg l-1 but did not significantly influence any of the other variables. The mycorrhizal inoculation effect observed at this soil solution P concentration could not be explained by any of the measures of plant P status. At 0.8 mg P l-1, none of the measured variables were affected significantly by mycorrhizal inoculation. The results indicate that the enhanced nodulation associated with mycorrhizal inoculation at soil P concentrations lower than 0.4 mg l-1 was explainable by mycorrhizal-mediated P uptake. The small but significant increase in nodule mass due to VAMF inoculation at 0.4 mg P l-1 suggests that factors not related to plant P nutrition may be involved. On the other hand, the lack of a VAMF inoculation effect at 0.8 mg P l-1 despite VAMF colonization at a level comparable to that observed at the former P concentration appear to discount this hypothesis. This observation is also supported by the lack of response of plant N status and nodule number to VAMF inoculation at this soil P concentration.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No.4066  相似文献   

4.
VA菌根降低植物对重金属镉的吸收   总被引:5,自引:0,他引:5  
高等植物在漫长的进化过程中对环境产生种种适应机制。菌根的形成即是对自然土壤中有效磷不足的一种适应。菌根真菌与寄主根系共生形成菌根后,真菌的菌丝可以远远伸出根际范围从而扩大了植物对土壤中难以移动的磷元素的吸收范围而改善植物的磷素营养。因此,地球上90%的陆生植物都可形成菌根。菌根的形成,不仅促进了植物对磷的吸收,而且也影响到植物对其它元素包括重金属的吸收。在重金属污染的土壤中,菌根对植物重金属的吸收将影响到植物对重金属的抗性和农产品品质。本文拟研究在添加镉的土壤上菌根对植物吸收Cd的影响。  相似文献   

5.
丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响   总被引:1,自引:0,他引:1  
采用大田试验的方法在内蒙古锡林格勒草原进行牧草接种试验,通过灭菌和未灭菌两种土壤研究接种丛枝菌根真菌Glomus mosseae和Glomus claroidium对内蒙古典型草原优势种羊草生长的影响.结果显示,接种丛枝菌根真菌对羊草的地上部干重未产生显著影响,但向未灭菌土壤中接种能显著增加羊草根系量,同时接种G.mosseae显著增加了地上部的N、P含量及吸收量,有效地改善了植株N、P营养,提高了牧草品质;2种菌对根系的营养吸收影响不同,接种G.mosseae在灭菌土壤和未灭菌土壤中均能显著增加根系的N、P吸收量,而接种G.claroidium仅在土壤未灭菌状态下增加根系N、P吸收量;接种对土壤中的菌丝密度未产生显著影响,但接种后土壤中微生物量碳有增加的趋势,短期内难以观察到接种对土壤有机碳的影响.研究表明,丛枝菌根真菌能够提高牧草对N、P吸收,促进牧草的生长,改善牧草品质,增强牧草根际微生物量碳.  相似文献   

6.
土壤灭菌对辣椒抗连作障碍效果   总被引:11,自引:1,他引:10  
采用土壤灭菌的方法研究了生物因素对连作3年的辣椒植株生长发育和抗氧化酶活性的影响。探讨了土壤灭菌对辣椒抗连作障碍的效果。结果表明,灭菌的连作土壤,辣椒的株高、茎粗、叶面积、叶绿素含量、地上部鲜重、根鲜重、根系活力等值均高于未灭菌土壤,并伴随着抗氧化酶如超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性降低。说明土壤灭菌提高了地上部和根的健壮程度.降低了连作辣椒中抗氧化酶的活性。与正茬土壤相比,辣椒植株的健壮程度仍存在明显差异,抗氧化酶SOD和POD的活性偏高,这可能是短期连作中,土壤灭菌有效的克服了有害微生物的连作障碍效应,但是不能消除由化感物质引起的连作障碍效应。  相似文献   

7.
Run-Jin Liu 《Mycorrhiza》1995,5(4):293-297
The development of vesicular-arbuscular mycorrhizal fungi (VAMF): Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe, Glomus versiforme (Karsten) Berch, Sclerocystis sinuosa Gerdemann and Bakhi and Verticillium dahliae and the effects of the VAMF on the verticillium wilt of cotton (Gossypium hirsutum L. and Gossypium barbadense L.) were studied with paper pots, black plastic tubes and clay pots under natural growth conditions. All of the tested VAMF were able to infect all the cotton varieties used in the present experiment and typical vesicles and arbuscules were formed in the cortical cells of the cotton roots after inoculation. The cap cells, meristem, differentiating and elongating zones of the root tip were found to be colonized by the VAMF. In the case of most V. dahliae infection, the colonization occurred mostly from the root tip up to 2 cm. VAMF and V. dahliae mutually reduced their percentage of infection when inoculated simultaneously. VAMF inoculation reduced the numbers of germinable microsclerotia in the soil of the mycorrhizosphere, while the quantity of VAM fungal spores in the soil was not influenced by infection of with V. dahliae. The % of arbuscule colonization in roots was negatively correlated with the disease grades, while the numbers of vesicles in roots were not. These results suggest that certain vital competition and antagonistic reactions exist between VAMF and V. dahliae. VAMF reduced the incidence and disease indices of verticillium wilt of cotton during the whole growth phase. It is evident that cotton seedling growth was promoted, flowering was advanced, the numbers of flowers and bolls were increased, and this resulted in an increase in the yield of seed cotton. Among the VAMF species, Glomus versiforme was the most effective, and Sclerocystis sinuosa was inferior. So far as the author is aware, such an effect of VAMF on the increase of cotton wilt tolerance/resistance is reported here far the first time.  相似文献   

8.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

9.
M. Soedarjo  M. Habte 《Mycorrhiza》1995,5(5):337-345
Glomus aggregatum and Leucaena leucocephala were allowed to interact in a manganese-rich oxisol at pH 4.3–6.0 and at soil P concentrations considered optimal for mycorrhizal host growth and sufficient for nonmycorrhizal host growth. At 0.02 mg P l-1, vesicular-arbuscular mycorrhizal fungal (VAMF) colonization of roots increased as soil pH increased from 4.3 to 5.0. However, VAMF colonization of roots did not respond to further increases in pH. At pH 6.0, growth of mycorrhizal Leucaena observed at 0.02 mg P was comparable with that observed at 0.8 mg P l-1. Increasing P concentration from 0.02 to 0.8 mg P 1-1 increased target soil pH from 4.3 to 4.7 and reduced the concentration of available soil Mn from 15.1 to 1.9 mg 1-1. Thus, the normal plant growth observed at the higher P concentration at pH<5 was mainly due to the alleviation of Mn toxicity as a result of its precipitation by excess P. VAMF colonization levels observed at pH 5.0–6.0 were similar, but maximal plant growth occurred at pH 6.0, suggesting that the optimal pH for mycorrhizal formation was substantially lower than for VAMF effectiveness. The poor growth of Leucaena at the lower P concentration in the unlimed soil was largely due to high concentrations of Mn2+ and H+ ions.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3910  相似文献   

10.
Aims Studies have showed that arbuscular mycorrhizal fungi (AMF) can greatly promote the growth of host plants, but how AMF affect flowering phenology of host plants is not well known. Here, we conducted a pot experiment to test whether life cycle and flowering phenology traits of host plant Medicago truncatula Gaertn can be altered by AMF under low and high soil phosphorus (P) levels.Methods The experiment was conducted in a greenhouse at Zhejiang University in China (120°19′E, 30°26′N) and had a completely randomized design with two factors: AMF treatments and soil P levels. Six AMF species (Acaulospora scrobiculata, As; Gigaspora margarita, Gma; Funneliformis geosporum, Fg; Rhizophagus intraradices, Ri; Funneliformis mosseae, Fmo and Glomus tortuosum, Gt.) were used, and two soil P levels (24.0 and 5.7 mg kg-1 Olsen-soluble P) were designed. The six AMF species were separately inoculated or in a mixture (Mix), and a non-AMF control (NAMF) was included. When plants began to flower, the number of flowers in each pot was recorded daily. During fruit ripening, the number of mature fruits was also recorded daily. After ~4 months, the biomass, biomass P content and AMF colonization of host plant were measured. Correlation between root colonization and first flowering time, or P content and first flowering time was analyzed.Important findings Under the low P level, first flowering time negatively correlated with root colonization and biomass P. Only host plants with AMF species As, Fg, Ri, or Mix were able to complete their life cycle within 112 days after sowing. And treatment with AMF species Fg, Gt, or As resulted in two periods of rapid flower production while other fungi treatments resulted in only one within 112 days after sowing. The cumulative number of flowers produced and biomass P content were highest with species Fg. Host biomass allocation significantly differed depending on the species of AMF. Under both soil P levels, the host plant tended to allocate more biomass to fruits in the Mix treatment than in the other treatments. These results indicated that the effects of AMF on host flowering phenology and biomass allocation differed depending on AMF species and soil P levels.  相似文献   

11.
M. Habte  R. L. Fox 《Plant and Soil》1993,151(2):219-226
Five tropical soils were either not inoculated or inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The degree to which VAM effectiveness was expressed in the soils was evaluated prior and after solution P status was adjusted for optimal VAM activity. VAM effectiveness determined by monitoring P concentrations of pinnules of Leucaena leucocephala leaves as a function of time and as dry matter yield determined at the time of harvest, indicated that in three of the soils VAM effectiveness was either very restricted or altogether unexpressed irrespective of vesicular-arbuscular mycorrhizal fungal (VAMF) inoculation if soil solution P was not optimized for VAM effectiveness. After P optimization, effectiveness was significantly increased by VAMF inoculation although in four of the soils, densities of indigenous VAMF propagules greatly exceeded that attained by the inoculum after it was mixed with soil. Mycorrhizal fungal inoculation effects varied from soil to soil, depending on the extent to which the effectiveness of indigenous and introduced endophytes was enhanced by P optimization and the similarity of inherent soil solution P concentrations to the range known to be optimum for VAM effectiveness. Of the indicator variables monitored, VAMF colonization was least sensitive to treatment effects followed by shoot P concentration measured at the time of harvest.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.  相似文献   

12.
M. Habte  M. Soedarjo 《Mycorrhiza》1995,5(6):387-394
Glomus aggregatum and Leucaena leucocephala were interacted in an acid Mn-rich oxisol unamended or amended with lime [Ca(OH)2] or gypsum (CaSO4) at soil P concentrations considered optimal for mycorrhizal host growth and sufficient for mycorrhiza-free growth. At 0.02 mg P 1-1, both vesicular-arbuscular mycorrhizal fungal (VAMF) colonization and function were significantly curtailed if soil was not amended with gypsum or lime. The highest mycorrhizal effect was observed in the limed soil, followed by the soil treated with gypsum at the rate of 32 g Ca kg-1 soil. Higher concentrations of gypsum deleteriously affected VAMF infectivity and effectivity. The first increment of gypsum compensated completely for the VAMF colonization and for part of the mycorrhizal effect that was lost due to low pH. The superiority of the limed soil to that amended with gypsum apparently lies in the fact that Ca supply was assured in the former and also that the adverse effects of toxic constituents such as H+ and Mn2+ were eliminated. We were unable to separate the effect of Ca on VAMF from its effect on the host because a P concentration sufficient for mycorrhiza-free growth was not attained due to interaction of some of the P with Ca to form insoluble phosphate.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 4045  相似文献   

13.
Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).  相似文献   

14.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg?1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, ?AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg?1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg?1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

15.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg-1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, -AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg-1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg-1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

16.
Peanut plants (cv. Shulamit) were grown in an Oxisol soil in pots in the glasshouse to assess effects of soil sterilization and inoculation with spores of vesicular-arbuscular mycorrhizal fungi (VAMF) on the response to five rates of phosphorus (0 to 240 kg P ha–1) and two rates of zinc (0 and 10 kg Zn ha–1) fertilizers.Both P and Zn nutrition were affected by VAMF activity but the dominant role of VAMF in this soil type was in uptake of P. In the absence of VAMF there was a clear threshold level of P application (60 kg P ha–1) below which plants grew poorly, which resulted in a sigmoidal response of dry matter to applied P. The maximum response was not fully defined because dry matter production continued to increase up to 240 kg P ha–1. Tissue P concentration of non-mycorrhizal plants increased linearly with P rate and was always significantly less than that in mycorrhizal plants.Mycorrhizal plants responded without threshold to increasing P rate, attaining maximum dry matter at 120 kg P ha–1 in inoculated sterilized soil and at 30 kg P ha–1 in nonsterile soil. These differences in maximal P rates and in the greater dry matter produced in sterile soil at high P rates were attributed to the negative effects of the root-knot nematodeMeloidogyne hapla in nonsterile soil.Plant weight did not respond to zinc fertilizer but tissue Zn concentration increased with applied Zn. Tissue Zn concentration and uptake were increased by VAMF.  相似文献   

17.
The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions.  相似文献   

18.
Sorghum [Sorghum bicolor (L.) Moench] was grown in a greenhouse in a low P (3.6 mg kg-1) soil (Typic Argiudolls) inoculated with the vesicular-arbuscular mycorrhizal fungi (VMAF) Glomus fasciculatum and P added at 0, 12.5, 25.0, and 37.5 mg kg-1 soil to determine the effects of VAMF-root associations on plant growth, benefit and cost analysis, and P efficiency (dry matter produced/unit P absorbed). Root colonization with VAMF and shoot growth enhancements decreased with increased soil P applications. Mycorrhizal plants were less P efficient than nonmycorrhizal plants. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants were considered the benefit derived by plants from VAMF-root associations. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants with similar P concentrations were considered the costs paid by plants for VAMF-root associations. Values of benefit and cost analysis for VAMF-root associations were highest when soil P was lowest and decreased with increasing P applications. Genotypic differences for calculated costs were pronounced, but not benefits. Benefit and cost analysis.may be helpful to evaluate host plant genotypes and VAMF species to optimize efficiencies of VAMF symbiosis in different soil environments.  相似文献   

19.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

20.
Authors index   总被引:1,自引:0,他引:1  
Lehmann  Johannes  Weigl  Doris  Peter  Inka  Droppelmann  Klaus  Gebauer  Gerhard  Goldbach  Heiner  Zech  Wolfgang 《Plant and Soil》1999,210(2):249-262
In a runoff irrigation system in Northern Kenya, we studied the nutrient interactions of sole cropped and alley cropped Sorghum bicolor (L.) Moench and Acacia saligna (Labill.) H.L. Wendl. The trees were pruned once before the cropping season and the biomass was used as fodder for animals. The nutrient contents in leaf tissue, soil and soil solution were monitored and the uptake of applied tracers (15N, Sr) was followed. The grain yield of alley cropped sorghum was similar to or slightly higher than in monoculture and did not decrease near the tree-crop interface. Foliar N and Ca contents of the crop were higher in the agroforestry combination than in monoculture, corresponding to higher soil N and Ca contents. Soil solution and soil mineral N dynamics indicate an increase of N under the tree row and unused soil N at the topsoil in the alley of the sole cropped trees as well as below 60 cm depth in the crop monoculture. The N use efficiency of the tree+crop combination was higher than the sole cropped trees or crops. Competition was observed for Zn and Mn of both tree and crop whereas for Ca only the tree contents decreased. P, K, Mg and Fe dynamics were not affected by alley cropping at our site. The lower uptake of applied Sr by trees in alley cropping compared to those of the monoculture stand suggested a lower competitiveness of the acacia than sorghum, which did not show lower Sr contents when intercropped. The study showed the usefulness of combining soil and plant analyses together with tracer techniques identifying nutrient competition, nutrient transfer processes and the complementary use of soil nutrients, as the main features of the tree-crop combination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号