首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

2.
3D finite element models of human lumbar functional spinal units (FSU) were used for numerical analysis of weightbath hydrotraction therapy (WHT) applied for treating degenerative diseases of the lumbar spine. Five grades of age-related degeneration were modeled by material properties. Tensile material parameters of discs were obtained by parameter identification based on in vivo measured elongations of lumbar segments during regular WHT, compressive material constants were obtained from the literature. It has been proved numerically that young adults of 40–45 years have the most deformable and vulnerable discs, while the stability of segments increases with further aging. The reasons were found by analyzing the separated contrasting effects of decreasing incompressibility and increasing hardening of nucleus, yielding non-monotonous functions of stresses and deformations in terms of aging and degeneration. WHT consists of indirect and direct traction phases. Discs show a bilinear material behaviour with higher resistance in indirect and smaller in direct traction phase. Consequently, although the direct traction load is only 6% of the indirect one, direct traction deformations are 15–90% of the indirect ones, depending on the grade of degeneration. Moreover, the ratio of direct stress relaxation remains equally about 6–8% only. Consequently, direct traction controlled by extra lead weights influences mostly the deformations being responsible for the nerve release; while the stress relaxation is influenced mainly by the indirect traction load coming from the removal of the compressive body weight and muscle forces in the water. A mildly degenerated disc in WHT shows 0.15 mm direct, 0.45 mm indirect and 0.6 mm total extension; 0.2 mm direct, 0.6 mm indirect and 0.8 mm total posterior contraction. A severely degenerated disc exhibits 0.05 mm direct, 0.05 mm indirect and 0.1 mm total extension; 0.05 mm direct, 0.25 mm indirect and 0.3 mm total posterior contraction. These deformations are related to the instant elastic phase of WHT that are doubled during the creep period of the treatment. The beneficial clinical impacts of WHT are still evident even 3 months later.  相似文献   

3.
PurposeTo evaluate the spatial accuracy of a frameless cone-beam computed tomography (CBCT)-guided cranial radiosurgery (SRS) using an end-to-end (E2E) phantom test methodology.Methods and materialsFive clinical SRS plans were mapped to an acrylic phantom containing a radiochromic film. The resulting phantom-based plans (E2E plans) were delivered four times. The phantom was setup on the treatment table with intentional misalignments, and CBCT-imaging was used to align it prior to E2E plan delivery. Comparisons (global gamma analysis) of the planned and delivered dose to the film were performed using a commercial triple-channel film dosimetry software. The necessary distance-to-agreement to achieve a 95% (DTA95) gamma passing rate for a fixed 3% dose difference provided an estimate of the spatial accuracy of CBCT-guided SRS. Systematic (∑) and random (σ) error components, as well as 95% confidence levels were derived for the DTA95 metric.ResultsThe overall systematic spatial accuracy averaged over all tests was 1.4 mm (SD: 0.2 mm), with a corresponding 95% confidence level of 1.8 mm. The systematic (Σ) and random (σ) spatial components of the accuracy derived from the E2E tests were 0.2 mm and 0.8 mm, respectively.ConclusionsThe E2E methodology used in this study allowed an estimation of the spatial accuracy of our CBCT-guided SRS procedure. Subsequently, a PTV margin of 2.0 mm is currently used in our department.  相似文献   

4.
ObjectiveTo evaluate the effect of cone-beam computed tomography (CBCT) image acquisition protocols on image quality, lesion detection, delineation, and patient dose.Methods100-patients and a CTDI phantom combined with an electron density phantom were examined using four different CBCT-image acquisition protocols during image-guided transarterial chemoembolization (TACE). Protocol-1 (time: 6 s, tube rotation: 360°), protocol-2 (5 s, 300°), protocol-3 (4 s, 240°) and protocol-4 (3 s, 180°) were used. The protocols were first investigated using a phantom. The protocols that were found to be clinically appropriate in terms of image quality and radiation dose were then assessed on patients. A higher radiation dose and/or a poor image quality were inappropriate for the patient imaging. Patient dose (patient-entrance dose and dose-area product), image quality (Hounsfield Unit, noise, signal-to-noise ratio and contrast-to-noise ratio), and lesion delineation (tumor-liver contrast) were assessed and compared using appropriate statistical tests. Lesion detectability, sensitivity, and predictive values were estimated for CBCT-image data using pre-treatment patient magnetic resonance imaging.ResultsThe estimated patient dose showed no statistical significance (p > 0.05) between protocols-2 and -3; the assessed image quality between these protocols manifested insignificant difference (p > 0.05). Two other phantom protocols were not considered for patient imaging due to significantly higher dose (protocols-1) and poor image quality (protocol-4). Lesion delineation and detection were insignificant (p > 0.05) between protocols-2 and -3. Lesion sensitivities generated were 81–89% (protocol-2) and 81–85% (protocol-3) for different lesion types.ConclusionData acquisition using protocols-2 and -3 provided good image quality, lesion detection and delineation with acceptable patient dose during CBCT-imaging mainly due to similar frame numbers acquired.  相似文献   

5.
We aimed to develop a method of gathering complete information on the system of bite forces acting on the dental arches during clenching with the teeth in maximum intercuspation. Further, we attempted to reduce this system into an equivalent wrench—a force–couple system comprising a single force and a single couple acting along a unique line of action. We investigated the normative distribution of the bite forces and the location and orientation of their resultant wrench in 30 young adults (18–23 yr) with natural dentitions. The number of detected occlusal contacts varied from 12 to 46 (mean: 26.1; SD: 8.4), and was significantly greater for the molars than the premolar and anterior teeth, as were the bite-force magnitudes at individual occlusal contacts (1.2–218.4 N); those resulted in the antero-posteriorly slanted bite-force distribution. The magnitude of the bite-force resultants varied from 246.9 to 2091.9 N, and the points at which the resultant wrench axes intersected the mandibular occlusal plane were located 21.3–37.6 mm posterior to the incisal point and less than 8.9 mm from the midline bilaterally. The bite-force resultant was slightly inclined anteriorly from the perpendicular direction to the mandibular occlusal plane. Our method of using pressure-sensitive films to obtain information on all parameters needed to mechanically define a force (such as magnitude, direction, and point of application) is novel. To our knowledge, this is the first study investigating the system of bite forces during forceful intercuspal clenching in six degrees-of-freedom.  相似文献   

6.

Aim and background

IGRT based on bone matching may produce a large target positioning error in terms of the reproducibility of expiration breath-holding on SBRT for liver cancer. We evaluated the intrafractional and interfractional errors using the diaphragm position at the end of expiration by utilising Abches and analysed the factor of the interfractional error.

Materials and methods

Intrafractional and interfractional errors were measured using a couple of frontal kV images, planning computed tomography (pCT) and daily cone-beam computed tomography (CBCT). Moreover, max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT were calculated.

Results

The mean ± SD (standard deviation) of the intra-fraction diaphragm position variation in the frontal kV images was 1.0 ± 0.7 mm in the C-C direction. The inter-fractional diaphragm changes were 0.4 ± 4.6 mm in the C-C direction, 1.4 ± 2.2 mm in the A-P direction, and ?0.6 ± 1.8 mm in the L-R direction. There were no significant differences between the maximum value of the max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT.

Conclusions

Residual intrafractional variability of diaphragm position is minimal, but large interfractional diaphragm changes were observed. There was a small effect in the patient condition difference between pCT and CBCT. The impact of the difference in daily breath-holds on the interfractional diaphragm position was large or the difference in daily breath-holding heavily influenced the interfractional diaphragm change.  相似文献   

7.
AimThe aim of the study was to evaluate computed tomography (CT) artifacts and image recognition of the CyberKnife system. Regarding fiducial markers, VISICOIL of 0.5 mm × 5.0 mm and 0.75 mm × 5.0 mm, ball-shaped Gold Anchor (GA) of 0.28 mm × 10 mm and 0.28 mm × 20 mm, were compared with the standard cylinder marker of 0.9 mm × 3.0 mm (ACCULOC).BackgroundRecently, various kinds of commercial fiducial markers have been available in CyberKnife treatment.Materials and methodsThe CT images of a water equivalent gel with each fiducial marker were acquired for the evaluation of CT artifacts. The evaluation was performed using the standard deviation of Hounsfield Unit (HU) value for a rectangle region near the fiducial marker. Then, to evaluate the image recognition, each fiducial marker was located to overlap in the target locating system (TLS) for the two sites; the vertebral bone and the pubic bone.ResultsFor CT artifacts, the standard deviations of the VISICOIL of 0.5 mm × 5.0 mm was the smallest. The image recognition of four fiducial markers had a value close to the standard cylinder marker and was feasible for common use, but was slightly poorer when using GA of 0.28 mm × 10 mm in the dynamic conditions.ConclusionOur results indicated that VISICOIL 0.5 × 5.0 mm and the GAs can be used nearly always for CyberKnife treatment in spite of their much thinner needles than those of cylinder types.  相似文献   

8.
AimPatient setup errors were aimed to be reduced in radiotherapy (RT) of head-and-neck (H&N) cancer. Some remedies in patient setup procedure were proposed for this purpose.BackgroundRT of H&N cancer has challenges due to patient rotation and flexible anatomy. Residual position errors occurring in treatment situation and required setup margins were estimated for relevant bony landmarks after the remedies made in setup process and compared with previous results.Materials and methodsThe formation process for thermoplastic masks was improved. Also image matching was harmonized to the vertebrae in the middle of the target and a 5 mm threshold was introduced for immediate correction of systematic errors of the landmarks. After the remedies, residual position errors of bony landmarks were retrospectively determined from 748 orthogonal X-ray images of 40 H&N cancer patients. The landmarks were the vertebrae C1–2, C5–7, the occiput bone and the mandible. The errors include contributions from patient rotation, flexible anatomy and inter-observer variation in image matching. Setup margins (3D) were calculated with the Van Herk formula.ResultsSystematic residual errors of the landmarks were reduced maximally by 49.8% (p  0.05) and the margins by 3.1 mm after the remedies. With daily image guidance the setup margins of the landmarks were within 4.4 mm, but larger margins of 6.4 mm were required for the mandible.ConclusionsRemarkable decrease in the residual errors of the bony landmarks and setup margins were achieved through the remedies made in the setup process. The importance of quality assurance of the setup process was demonstrated.  相似文献   

9.
A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1 MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050 N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550 N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100 N, and of force values every 2 m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500 N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500 N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.  相似文献   

10.
Wearable hip protectors represent a promising strategy for reducing risk for hip fracture from a sideways fall. However, small changes in pad positioning may influence their protective benefit. Using a mechanical hip impact simulator, we investigated how three marketed soft shell hip protectors attenuate and redistribute the impact force applied to the hip, and how this depends on displacement from their intended position by 2.5 or 5 cm superiorly, posteriorly, inferiorly or anteriorly. For centrally-placed protectors, peak pressure was reduced 93% below the unpadded value by a 16 mm horseshoe-shaped protector, 93% by a 14 mm horseshoe protector, and 94% by a 16 mm continuous protector. In unpadded trials, 83% of the total force was applied to the skin overlying the proximal femur (danger zone). This was lowered to 19% by the centrally placed 16 mm horseshoe protector, to 34% by the 14 mm horseshoe, and to 40% by the 16 mm continuous protector. Corresponding reductions in peak force delivered to the femoral neck (relative to unpadded) were 45%, 38%, and 20%, respectively. The protective benefit of all three protectors decreased with pad displacement. For example, displacement of protectors by 5 cm anteriorly caused peak femoral neck force to increase 60% above centrally-placed values, and approach unpadded values. These results indicate that soft shell hip protectors provide substantial protective benefits, but decline in performance with small displacements from their intended position. Our findings confirm the need for correct and stable positioning of hip protectors in garment design.  相似文献   

11.
AimDescribe the anatomical changes and tumor displacement due to a rapid response of a patient’s small cell lung cancer (SCLC) during definitive chemoradiotherapy (CRT).BackgroundThe treatment for SCLC is based on CRT. If interfractional changes during RT are incorrectly assessed they might compromise adequate coverage of the tumor or increase dose to organs at risk. Image guided RT with cone-beam computed tomography (CBCT) allows to identify daily treatment variations.Material and methodsDescribe a SCLC case with rapid changes in size, shape and location of the primary tumor during RT.Case reportA 62-year-old woman was diagnosed with SCLC with complete obstruction of the anterior and lingular bronchi and incomplete left thorax expansion due to a 12 × 15 cm mass. During CRT (45 Gy in 1.5 Gy per fraction, twice daily) the patient presented rapid tumor response, leading to resolution of bronchi obstruction and hemithorax expansion. Tumor shifted up to 4 cm from its original position. The identification of variations led to two new simulations and planning in a 3-week treatment course.ConclusionsThe complete radiological response was possible due to systematic monitoring of the tumor during CRT. We recommend frequent on-site image verification. Daily CBCT should be considered with pretreatment tumor obstruction, pleural effusion, atelectasis, large volumes or radiosensitive histology that might resolve early and rapidly and could lead to a miss of the tumor or increased toxicity. Further research should be made in replanning effect in coverage of microscopic disease since it increases uncertainty in this scenario.  相似文献   

12.
PurposeTo evaluate the respiratory motion of adrenal gland metastases in three-dimensional directions using four-dimensional computed tomography (4DCT) images.MethodsFrom January 2013 to May 2016, 12 patients with adrenal gland metastases were included in this study. They all underwent 4DCT scans to assess respiratory motion of adrenal gland metastases in free breathing state. The 4DCT images were sorted into 10 image series according to the respiratory phase from the end inspiration to the end expiration, and then transferred to FocalSim workstation. All gross tumor volumes (GTVs) of adrenal gland metastases were drawn by a single physician and confirmed by a second. Relative coordinates of adrenal gland metastases were automatically generated to calculate adrenal gland metastases motion in different axial directions.ResultsThe average respiratory motion of adrenal gland metastases in left-right (LR), cranial-caudal (CC), anterior-posterior (AP), 3-dimensional (3D) vector directions was 3.4 ± 2.2 mm, 9.5 ± 5.5 mm, 3.8 ± 2.0 mm and 11.3 ± 5.3 mm, respectively. The ratios were 58.6% ± 11.4% and 63.2% ± 12.5% when the volumes of GTVIn0% and GTV In100% were compared with volume of IGTV10phase. The volume ratio of IGTV10phase to GTV3D was 1.73 ± 0.48.ConclusionsAdrenal gland metastasis is a respiration-induced moving target, and an internal target volume boundary should be provided when designing the treatment plan. The CC motion of adrenal gland metastasis is predominant and >5 mm, thus motion management strategies are recommended for patients undergoing external radiotherapy for adrenal gland metastasis.  相似文献   

13.
An alternative, yet unverified, predictive method that places the hip joint center (HJC) at one-quarter of the distance from the ipsolateral to the contralateral greater trochanter (GT method) is currently widely used in the biomechanics community. Therefore, the objective of this study was to confirm that this method is a viable option for estimating HJC coordinates. To accomplish this, HJC coordinates in the pelvic anatomical coordinate system were estimated via the GT method, a functional method, and the regression equations proposed by Bell et al. (1990). The HJC coordinated estimated by the functional method served as a baseline measurement. The results of this study demonstrate that all three methods evaluated offer repeatable estimates of HJC location. In comparison to the functional method, the GT method yielded a HJC estimate that was 7.6 mm medial, 12.2 mm posterior, and 4.8 mm proximal. On the other hand, the Bell regression equations estimated the HJC to be 2.6 mm medial, 7.2 mm posterior, and 21.7 mm proximal relative to the functional method. Additionally, the total 3D difference between the GT and functional methods was 23.5 mm compared to the 30.8 mm difference between the Bell and functional methods. These results suggest that the GT method is a viable option for estimating HJC coordinates.  相似文献   

14.
The coupling of the intervertebral disc (IVD) and vertebra as a biomechanical unit suggests that changes in the distribution of pressure within the IVD (intradiscal pressure, IDP) as a result of disc degeneration can influence the distribution of bone density within the vertebra, and vice versa. The goal of this study was to assess the correspondence between IDP and bone density in the adjacent vertebrae, with emphasis on how this correspondence differs between healthy and degenerated IVDs. Bone density of the endplates and subchondral bone in regions adjacent to the anterior and posterior annulus fibrosus (aAF and pAF, respectively) and nucleus pulposus (NP) was measured via quantitative computed tomography (QCT) in 61 spine segments (T7-9, T9-11, T10-12; 71 ± 14 years). IDP was measured in the aAF, NP, and pAF regions in 26 of the spine segments (68 ± 16 years) while they were tested in flexed (5°) or erect postures. Disc degeneration was assessed by multiple grading schemes. No correlation was found between bone density and IDP in either posture (p > 0.104). Regional variations in IDP and, to a greater extent bone density, were found to change with advancing degeneration: both IDP (p = 0.045) and bone density (p = 0.024) decreased in the NP region relative to the aAF region. The finding of only a modest correspondence between degeneration-associated changes in IDP and bone density may arise from complexity in how IDP relates to mechanical force transmission through the endplate and from limitations of the available IVD grading schemes in estimating the mechanical behavior of the IVD.  相似文献   

15.
Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence of additional copper (Cu) and aluminium (Al) flat filters on patient dose and image quality and seek an optimum filter thickness for the GE LightSpeed VCT 64-slice CT scanner using experimental phantom measurements. Different thicknesses of Cu and Al filters (0.5–1.6 mm Cu, 0.5–4 mm Al) were installed on the scanner’s collimator. A planar phantom consisting of 13 slabs of Cu having different thicknesses was designed and scanned to assess the impact of beam filtration on contrast in the intensity domain (CT detector’s output). To assess image contrast and image noise, a cylindrical phantom consisting of a polyethylene cylinder having 16 holes filled with different concentrations of K2HPO4 solution mimicking different tissue types was used. The GE performance and the standard head CT dose index (CTDI) phantoms were also used to assess image resolution characterized by the modulation transfer function (MTF) and patient dose defined by the weighted CTDI. A 100 mm pencil ionization chamber was used for CTDI measurement. Finally, an optimum filter thickness was determined from an objective figure of merit (FOM) metric. The results show that the contrast is somewhat compromised with filter thickness in both the planar and cylindrical phantoms. The contrast of the K2HPO4 solutions in the cylindrical phantom was degraded by up to 10% for a 0.68 mm Cu filter and 6% for a 4.14 mm Al filter. It was shown that additional filters increase image noise which impaired the detectability of low density K2HPO4 solutions. It was found that with a 0.48 mm Cu filter the 50% MTF value is shifted by about 0.77 lp/cm compared to the case where the filter is not used. An added Cu filter with approximately 0.5 mm thickness accounts for 50% reduction in radiation-absorbed dose as measured by the weighted CTDI. The FOM results indicate that with an additional filter of 0.5 mm Cu or minimum 4 mm Al, a good compromise between image quality and patient dose is achieved for CT images acquired at tube voltages of 120 and 140 kVp. The results seem to indicate that an optimum filter for high kVp acquisitions, routinely used in cardiovascular imaging, should be 0.5 mm copper or 4 mm aluminium minimum.  相似文献   

16.
AimThe aim was to find an optimal setup image matching position and minimal setup margins to maximally spare the organs at risk in breast radiotherapy.BackgroundRadiotherapy of breast cancer is a routine task but has many challenges. We investigated residual position errors in whole breast radiotherapy when orthogonal setup images were matched to different bony landmarks.Materials and methodsA total of 1111 orthogonal setup image pairs and tangential field images were analyzed retrospectively for 50 consecutive patients. Residual errors in the treatment field images were determined by matching the orthogonal setup images to the vertebrae, sternum, ribs and their compromises. The most important region was the chest wall as it is crucial for the dose delivered to the heart and the ipsilateral lung. Inter-observer variation in online image matching was investigated.ResultsThe best general image matching position was the compromise of the vertebrae, ribs and sternum, while the worst position was the vertebrae alone (p  0.03). The setup margins required for the chest wall varied from 4.3 mm to 5.5 mm in the lung direction while in the superior–inferior (SI) direction the margins varied from 5.1 mm to 7.6 mm. The inter-observer variation increased the minimal margins by approximately 1 mm. The margin of the lymph node areas should be at least 4.8 mm.ConclusionsSetup margins can be reduced by proper selection of a matching position for the orthogonal setup images. To retain the minimal margins sufficient, systematic error of the chest wall should not exceed 4 mm in the tangential field image.  相似文献   

17.
Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB).For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (ΔHP-FE) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (ΔHP-CW) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall.For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the ΔHP-FE and the ΔHP-CW was 0.8 ± 4.2 mm (range −9.4–+10.6 mm) and 1.0 ± 4.4 mm (range −8.3–+10.4 mm) respectively. The average gain in heart to chest wall distance was 11.8 ± 4.6 mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course.  相似文献   

18.
The purpose of this study was to investigate the effect of image quality under various imaging parameters (60, 70, 80, 90, 100, 110, and 120 kV at 200 mA and 10 ms/63, 80, 100, 160, 200, 250, and 320 mA at 120 kV and 10 ms) and the diameter of the fiducial marker (0.25, 0.50, 0.75, and 1.10 mm) on the correlation modeling error for dynamic tumor tracking (DTT) in the Vero4DRT system. Each fiducial marker was inserted into the center of the 30 × 30 × 10 cm3 water-equivalent phantom. A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of ±20 mm and a breathing cycle of 4 s. The correlation modeling error was calculated from the absolute difference between the detected and predicted target positions in the cranio-caudal direction. The image contrast of the fiducial marker was enhanced with increasing kV and mA. Increasing the diameter of the fiducial marker also enhanced the image contrast. Correlation-modeling error does not depend on the image quality and fiducial marker diameter. A lower kV setting did not generate a 4D model due to poor image contrast. All fiducial marker diameters were identified as good candidates for DTT in the Vero4DRT system.  相似文献   

19.
PurposeNon-local means (NLM) based reconstruction method is a promising algorithm for few-view computed tomography (CT) reconstruction, but often suffers from over-smoothed image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (ART-RIANLM) is proposed.MethodsThe method consists of four steps: 1) Initializing parameters; 2) ART reconstruction using raw data; 3) Positivity constraint of the reconstructed image; 4) Image updating by RIANLM filtering. In RIANLM, two kinds of rotational invariance measures which are average gradient (AG) and region homogeneity (RH) are proposed to calculate the distance between two patches and a novel NLM filter is developed to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it is constant in NLM during the whole reconstruction process. The proposed method is validated on two digital phantoms and real projection data.ResultsIn our experiments, the searching neighborhood size is set as 15 × 15 and the similarity window is set as 3 × 3. For the simulated case of Shepp-Logan phantom, ART-RIANLM produces higher SNR (36.23 dB > 24.00 dB) and lower MAE (0.0006 < 0.0024) reconstructed images than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and recover image edges better. The result of real data case is also consistent with the simulation result.ConclusionsA RIANLM based reconstruction method for few-view CT is presented. Compared to the traditional ART-NLM method, SNR and MAE from ART-RIANLM increases 51% and decreases 75%, respectively.  相似文献   

20.
《Médecine Nucléaire》2020,44(5-6):336-345
Cardiac positron emission tomography (PET) is superior to single-photon emission computed tomography (SPECT) thanks to its quantitative analysis capabilities, especially for measuring myocardial blood flow (MBF) and myocardial flow reserve (MFR). The recent development of new cadmium zinc telluride (CZT) gamma cameras has enabled dynamic acquisition, allowing measurement of MBF and MFR. This prospective study aimed to determine the fastest protocol, to analyse MBF and perfusion imaging.Methods and resultsFrom February to June 2018, 10 patients were referred to our centre and prospectively enrolled in our study to evaluate the MBF and MFR, with 5 different reconstruction list-mod. The primary endpoint was to assess the reproducibility of the different reconstruction, and time of acquisition. The secondary endpoint was the evaluation of the image quality of the MPI. The 6-min tests highlighted no significant difference in the flow measurement and MFR (P = 0,15). Differences become significant by decreasing acquisition time. The image quality did not differ significantly (P = 0.6).ConclusionWe determined a fast (12mn acquisition) reliable and reproducible protocol to evaluate MBF and MFR without any loss of MPI information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号