首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivesicular bodies (MVBs) are cholesterol-enriched organelles formed by the endocytic pathway. The topology of vesicle formation in MVBs is identical to that of retroviral budding from the plasma membrane, and budding of human immunodeficiency virus type 1 (HIV-1) into MVBs in macrophages has recently been visualized. The Gag proteins from HIV-1, as well as many other retroviruses, contain short motifs that mediate interactions with MVBs and other endocytic components, suggesting that Gag proteins directly interface with the endocytic pathway. Here, we show that HIV-1 Gag contains an internalization signal that promotes endocytosis of a chimeric transmembrane fusion protein. Mutation of this motif within Gag strongly inhibits virus-like particle production. Moreover, wild-type Gag, but not the internalization-defective mutation, can be induced to accumulate within CD63-positive MVBs by treatment of cells with U18666A, a drug that redistributes cholesterol from the plasma membrane to MVBs. We propose that HIV-1 Gag contains a signal that promotes interaction with the cellular endocytic machinery and that the site of particle production is regulated by the subcellular distribution of cholesterol.  相似文献   

2.
The ALP (alkyl-lysophospholipid) edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine; Et-18-OCH3) induces apoptosis in S49 mouse lymphoma cells. To this end, ALP is internalized by lipid raft-dependent endocytosis and inhibits phosphatidylcholine synthesis. A variant cell-line, S49AR, which is resistant to ALP, was shown previously to be unable to internalize ALP via this lipid raft pathway. The reason for this uptake failure is not understood. In the present study, we show that S49AR cells are unable to synthesize SM (sphingomyelin) due to down-regulated SMS1 (SM synthase 1) expression. In parental S49 cells, resistance to ALP could be mimicked by small interfering RNA-induced SMS1 suppression, resulting in SM deficiency and blockage of raft-dependent internalization of ALP and induction of apoptosis. Similar results were obtained by treatment of the cells with myriocin/ISP-1, an inhibitor of general sphingolipid synthesis, or with U18666A, a cholesterol homoeostasis perturbing agent. U18666A is known to inhibit Niemann-Pick C1 protein-dependent vesicular transport of cholesterol from endosomal compartments to the trans-Golgi network and the plasma membrane. U18666A reduced cholesterol partitioning in detergent-resistant lipid rafts and inhibited SM synthesis in S49 cells, causing ALP resistance similar to that observed in S49AR cells. The results are explained by the strong physical interaction between (newly synthesized) SM and available cholesterol at the Golgi, where they facilitate lipid raft formation. We propose that ALP internalization by lipid-raft-dependent endocytosis represents the retrograde route of a constitutive SMS1- and lipid-raft-dependent membrane vesicular recycling process.  相似文献   

3.
The dynamics of endolysosomal cholesterol were investigated in Niemann-Pick type C (NPC) cells and in human fibroblasts treated with class 2 amphiphiles to mimic NPC cells. We showed through new approaches that the massive pools of endolysosomal cholesterol in these cells are not trapped but, rather, circulate to the cell surface at about the normal rate. This flux spared NPC and amphiphile-treated cells from disruption by the extraction of their plasma membrane cholesterol with cyclodextrin. Nocodazole, a microtubule-depolymerizing agent, reversed the resistance of NPC and U18666A-treated cells to cholesterol depletion, apparently by reducing the flux of endolysosomal cholesterol to the plasma membrane. Neither nocodazole nor bafilomycin A1 (an inhibitor of the vacuolar proton pump) acted in the same way as the NPC mutation or class 2 amphiphiles: both agents decreased plasma membrane cholesterol at the expense of the endolysosomal pool and both blocked the actions of the amphiphile, U18666A. Finally, the resistance of NPC cells to lysis by amphotericin B was shown not to reflect a reduction in plasma membrane cholesterol arising from a block in lysosomal cholesterol export but rather the diversion of the amphotericin B to cholesterol-rich endolysosomes. We conclude that the large pool of endolysosomal cholesterol in NPC and amphiphile-treated fibroblasts is dynamic and that its turnover, as in normal cells, is dependent on microtubules.  相似文献   

4.
The pharmacological agent U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one inhibits the intracellular transport of low density lipoprotein (LDL)-derived cholesterol in Chinese hamster ovary (CHO) cells. LDL-derived cholesterol accumulates in the lysosomes of U18666A-treated cells causing delayed LDL-mediated regulation of cellular cholesterol metabolism and impaired movement of LDL-derived cholesterol to other cell membranes. As a result of impaired LDL-derived cholesterol transport, LDL-dependent growth of CHO cells is also inhibited by U18666A. By selecting for cell growth in the presence of U18666A, we have identified a CHO cell line, designated U18R, that is resistant to U18666A-inhibition of LDL-derived cholesterol trafficking. When compared to parental CHO cells, U18R cells are relatively resistant to U18666A inhibition of LDL-derived cholesterol transport as well as LDL-mediated regulation of cellular cholesterol metabolism. In cell fusion experiments, the U18666A resistance observed in U18R cells displays a dominant phenotype. Identification of the U18666A-resistant factor may provide important insights toward the understanding of intracellular LDL-derived cholesterol regulation and trafficking.  相似文献   

5.
Niemann-Pick disease type C (NPC) is a juvenile neurodegenerative disorder characterized by premature neuronal loss and altered cholesterol metabolism. Previous reports applying an 8-h exposure of U18666A, a cholesterol transport-inhibiting agent, demonstrated a dose-dependent reduction in beta-amyloid (Abeta) deposition and secretion in cortical neurons, with no significant cell injury. In the current study, we examined the chronic effect of 24-72h of U18666A treatment on primary cortical neurons and several cell lines. Our results showed caspase-3 activation and cellular injury in U18666A-treated cortical neurons but not in the cell lines, suggesting cell death by apoptosis only occurred in cortical neurons after chronic exposure to U18666A. We also demonstrated through filipin staining the accumulation of intracellular cholesterol in cortical neurons treated with U18666A, indicating the phenotypic mimic of NPC by U18666A. However, additions of 10 and 25microM pravastatin with 0.5microg/ml U18666A significantly attenuated toxicity. Taken together, these data showed for the first time that U18666A induces cell death by apoptosis and suggested an important in vitro model system to study NPC.  相似文献   

6.
Induction of cataracts in experimental animals is a common toxic feature of oxidosqualene cyclase (OSC) inhibitors. U18666A has been shown to produce irreversible lens damage within a few weeks of treatment. Drug actions, besides reducing the availability of cholesterol, could contribute to cataract formation. Cholesterol added to cultures of lens epithelial cells could only partially overcome the growth-inhibiting effects of U18666A. In view of this finding and the fact that U18666A and other OSC inhibitors are highly lipophilic cationic tertiary amines, we tested the hypothesis that the cataractogenic effect of U18666A is related to direct perturbation of lens membrane structure and function. Based on changes in the anisotropy of fluorescent probes, U18666A incorporated into bovine lens lipid model membranes increased membrane structural order and, using small-angle x-ray diffraction, U18666A was shown to intercalate into the lens lipid model membranes and produce a broad condensing effect on membrane structure. Also, exposure of cultured lens epithelial cells and intact rat lenses to U18666A induced apoptosis. Induction of apoptosis may begin by intercalation of U18666A into cell membranes. By increasing membrane structural order, U18666A may also increase light scatter, thus directly contributing to lens opacification.  相似文献   

7.
In mammalian cells, low density lipoprotein (LDL) is bound, internalized, and delivered to lysosomes where LDL-cholesteryl esters are hydrolyzed to unesterified cholesterol. The mechanisms of intracellular transport of LDL-cholesterol from lysosomes to other cellular sites and LDL-mediated regulation of cellular cholesterol metabolism are unknown. We have identified a pharmacological agent, U18666A (3-beta-[2-diethyl-amino)ethoxy]androst-5-en-17-one), which impairs the intracellular transport of LDL-derived cholesterol in cultured Chinese hamster ovary (CHO) cells. U18666A blocks the ability of LDL-derived cholesterol to stimulate cholesterol esterification, and to suppress 3-hydroxy-3-methylglutaryl-coenzyme A reductase and LDL receptor activities. However, U18666A does not impair 25-hydroxycholesterol-mediated regulation of these processes. In addition, U18666A impedes the ability of LDL-derived cholesterol to support the growth of CHO cells. However, U18666A has only moderate effects on growth supported by non-lipoprotein cholesterol. LDL binding, internalization, and lysosomal hydrolysis of LDL-cholesteryl esters are not affected by the presence of U18666A. Analysis of intracellular cholesterol transport reveals that LDL-derived cholesterol accumulates in the lysosomes of U18666A-treated CHO cells which results in impaired movement of LDL-derived cholesterol to other cell membranes.  相似文献   

8.
Bis(monoacylglycero)phosphate (BMP), also called lysobisphosphatidic acid, is a phospholipid highly enriched in the internal membranes of multivesicular late endosomes, in which it forms specialized lipid domains. It has been suggested that BMP-rich membranes regulate cholesterol transport. Here, we examine the effects of an anti-BMP antibody on cholesterol metabolism and transport in two macrophage cell lines, RAW 264.7 and THP-1, during loading with acetylated low density lipoprotein (AcLDL). Anti-BMP antibody was internalized and accumulated in both macrophage cell types. Cholesterol staining with filipin and mass measurements indicate that AcLDL-stimulated accumulation of free cholesterol (FC) was enhanced in macrophages that had accumulated the antibody. Unlike the hydrophobic amine U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), esterification of AcLDL-derived cholesterol by ACAT was not modified after anti-BMP treatment. AcLDL loading led to an increase of FC in the plasma membrane. This increase was further enhanced in anti-BMP-treated macrophages. However, cholesterol efflux to HDL was reduced in antibody-treated cells. These results suggest that the accumulation of anti-BMP antibody alters cholesterol homeostasis in AcLDL-loaded macrophages.  相似文献   

9.
Intracellular cholesterol amounts, distribution and traffic are tightly regulated to maintain the healthy eukaryotic cell function. However, how intracellular pathogens that require cholesterol, interact with the host cholesterol homeostasis and traffic is not well understood. Anaplasma phagocytophilum is an obligatory intracellular and cholesterol-robbing bacterium, which causes human granulocytic anaplasmosis. Here we found that a subset of cholesterol-binding membrane protein, Niemann-Pick type C1 (NPC1)-bearing vesicles devoid of lysosomal markers were upregulated in HL-60 cells infected with A. phagocytophilum, and trafficked to live bacterial inclusions. The NPC1 localization to A. phagocytophilum inclusions was abolished by low-density lipoprotein (LDL)-derived cholesterol traffic inhibitor U18666A. Studies using NPC1 siRNA and the cell line with cholesterol traffic defect demonstrated that the NPC1 function is required for bacterial cholesterol acquisition and infection. Furthermore, trans-Golgi network-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptors, vesicle-associated membrane protein (VAMP4) and syntaxin 16, which are associated with NPC1 and LDL-derived cholesterol vesicular transport were recruited to A. phagocytophilum inclusions, and VAMP4 was required for bacteria infection. Taken together, A. phagocytophilum is the first example of a pathogen that subverts the NPC1 pathway of intracellular cholesterol transport and homeostasis for bacterial inclusion membrane biogenesis and cholesterol capture.  相似文献   

10.
11.
We previously reported that unsaturated fatty acids stimulated low-density lipoprotein (LDL) particle uptake in J774 macrophages by increasing LDL receptor activity. Since free fatty acids (FFA) also change plasma membrane properties, a putative cholesteryl ester (CE) acceptor for selective uptake (SU), we questioned the ability of FFA to modulate SU from LDL. Using [(3)H]cholesteryl ether/(125)I-LDL to trace CE core and whole particle uptake, we found that oleic acid and eicosapentaenoic acid, but not saturated stearic acid, increased SU by 30% over control levels. An ACAT inhibitor, Dup128, abolished FFA effects on SU, indicating that increased SU by FFA was secondary to changes in cell-free cholesterol (FC). Consistent with these observations, ACAT inhibition increased cell FC and reduced LDL SU by half. The important role of plasma membrane composition was further demonstrated in that beta-cyclodextrin- (beta-CD-) mediated FC removal from the plasma membrane increased SU from LDL and was further stimulated by U18666A, a compound that inhibits FC transport between lysosomes and the plasma membrane. In contrast, cholesterol-saturated beta-CD markedly reduced LDL SU. In contrast to LDL SU, oleic acid, ACAT inhibition, U18666A, or beta-CD had no effects on HDL SU. Moreover, HDL SU was inhibited by antimouse SR-BI antibody by more than 50% but had little effect on LDL SU. In C57BL/6 mice fed a high fat diet, plasma FFA levels increased, and SU accounted for an almost 4-fold increased proportion of total cholesterol delivery to the arterial wall. Taken together, these data suggest that LDL SU is mediated by pathways independent of SR-BI and is influenced by plasma membrane FC content. Moreover, in conditions where elevated plasma FFA occur, SU from LDL can be an important mechanism for cholesterol delivery in vivo.  相似文献   

12.
Recently, a new class of lipid-lowering agents has been described that upregulate LDL receptor (LDLr) activity. These agents are proposed to activate sterol-regulated gene expression through binding to the sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). Here, we show that the steroidal LDLr upregulator, GW707, induces accumulation of lysosomal free cholesterol and inhibits LDL-stimulated cholesterol esterification, similar to that observed in U18666A-treated cells and in Niemann-Pick type C1 (NPC1) mutants. Moreover, we demonstrate that induction of the NPC-like phenotype by GW707 is independent of SCAP function. We find that treatment with GW707 does not increase SREBP-dependent gene expression above that observed in lipoprotein-starved cells. Rather, we show that the apparent increase in SREBP-dependent activity in GW707-treated cells is attributable to a failure to appropriately suppress sterol-regulated gene expression, as has been shown previously for U18666A-treated cells and NPC mutant fibroblasts. We further demonstrate that cells treated with either GW707 or U18666A fail to appropriately generate 27-hydroxycholesterol in response to LDL cholesterol. Taken together, these findings support a mechanism in which GW707 exerts its hypolipidemic effects through disruption of late endosomal/lysosomal sterol trafficking and subsequent stimulation of LDLr activity.  相似文献   

13.
Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3(DGV), specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1-3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cav(DGV) to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts.  相似文献   

14.
In this study, we evaluate the effects of (3β)‐3‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH‐EP1 cell line using whole‐cell patch‐clamp recordings. The results indicate that with 2‐min pretreatment, U18666A inhibited different nAChR subtypes with a rank‐order of potency (IC50 of whole‐cell peak current): α4β2 (8.0 ± 3.0 nM) > α3β2 (1.7 ± 0.4 μM) > α4β4 (26 ± 7.2 μM) > α7 (> 100 μM), suggesting this compound is more selective to α4β2‐nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on α4β2‐nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole‐cell currents mediated by human α4β2‐nAChRs in response to nicotine. In nicotine‐induced concentration–response curves, U18666A reduces nicotine‐induced current at maximally effective agonist concentrations without influencing nicotine’s EC50 value, suggesting a non‐competitive inhibition. U18666A‐induced inhibition of nAChR function is concentration‐, voltage‐, and use‐dependent, suggesting an open channel block. Taken into consideration of ~10 000‐fold enhancement of the potency of U18666A after 2‐min pre‐treatment, this compound also likely inhibits α4β2‐nAChRs through a close channel block. In addition, the U18666A‐induced inhibition in α4β2‐nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of α4β2‐nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.  相似文献   

15.
Reactive oxygen species (ROS) can induce lysosomal membrane permeabilization (LMP). Photoirradiation of murine hepatoma 1c1c7 cultures preloaded with the photosensitizer NPe6 generates singlet oxygen within acidic organelles and causes LMP and the activation of procaspases. Treatment with the cationic amphiphilic drugs (CADs) U18666A, imipramine, and clozapine stimulated the accumulation of filipin-stainable nonesterified cholesterol/sterols in late endosomes/lysosomes, but not in mitochondria. Concentration-response studies demonstrated an inverse relationship between lysosomal nonesterified cholesterol/sterol contents and susceptibility to NPe6 photoirradiation-induced intracellular membrane oxidation, LMP, and activation of procaspase-9 and -3. Similarly, the kinetics of restoration of NPe6 photoirradiation-induced LMP paralleled the losses of lysosomal cholesterol that occurred upon replating U18666A-treated cultures in CAD-free medium. Consistent with the oxidation of lysosomal cholesterol, filipin staining in U18666A-treated cultures progressively decreased with increasing photoirradiating light dose. U18666A also suppressed the induction of LMP and procaspase activation by exogenously added hydrogen peroxide. However, neither U18666A nor imipramine suppressed the induction of apoptosis by agents that did not directly induce LMP. These studies indicate that lysosomal nonesterified cholesterol/sterol content modulates susceptibility to ROS-induced LMP and possibly does so by being an alternative target for oxidants and lowering the probability of damage to other lysosomal membrane lipids and/or proteins.  相似文献   

16.
Mammalian cells, cultured in the presence of serum lipoproteins, acquire cholesterol necessary for growth from the uptake and lysosomal hydrolysis of low-density lipoproteins (LDL). The mechanism(s) of intracellular transport of LDL-derived cholesterol from lysosomes to other cellular sites is unknown. In this study, various pharmacological agents were assessed for their ability to inhibit the movement of LDL-cholesterol from lysosomes to the plasma membrane. The only pharmacological agent tested in these experiments that specifically inhibited LDL-cholesterol movement was U18666A. Ketoconazole impaired the intracellular transport of LDL-cholesterol; however, ketoconazole also had a general effect on cholesterol movement, since it impeded the desorption of endogenously synthesized cholesterol into the medium. Other drugs that affected cholesterol movement appeared to be nonspecific. Cholesterol transport from lysosomes to plasma membranes was not significantly altered by agents that affect lysosomal function or cytoskeletal organization, as well as energy poisons and cycloheximide.  相似文献   

17.
The origins of cholesterol utilized by intestinal ABCA1 were investigated in the human intestinal cell line Caco-2. Influx of apical membrane cholesterol increases ABCA1 mRNA and mass, resulting in enhanced efflux of HDL-cholesterol. Luminal (micellar) cholesterol and newly synthesized cholesterol are not transported directly to ABCA1 but reach the ABCA1 pool after incorporation into the apical membrane. Depleting the apical or the basolateral membrane of cholesterol by cyclodextrin attenuates the amount of cholesterol transported by ABCA1 without altering ABCA1 expression. Filipin added to the apical side but not the basal side attenuates ABCA1-mediated cholesterol efflux, suggesting that apical membrane "microdomains," or rafts, supply cholesterol for HDL. Preventing cholesterol esterification increases the amount of cholesterol available for HDL. Ezetimibe, a Niemann-Pick C1-like 1 protein inhibitor, does not alter ABCA1-mediated cholesterol efflux. U18666A and imipramine, agents that mimic cholesterol trafficking defects of Neimann-Pick type C disease, attenuate cholesterol efflux without altering ABCA1 expression; thus, intestinal NPC1 may facilitate cholesterol movement to ABCA1. ABCA1-mediated cholesterol efflux is independent of cholesterol synthesis. The results suggest that following incorporation into plasma membrane and rafts of the apical membrane, dietary/biliary and newly synthesized cholesterol contribute to the ABCA1 pool and HDL-cholesterol. NPC1 may have a role in this process.  相似文献   

18.
Caveolin-1 (Cav-1) is a transmembrane protein which clusters proteins and lipids at the cell membrane into a subclass of lipid rafts named caveolae. To increase our understanding about putative functions of Cav-1 in neuronal cells, we used mouse brain extracts and a novel technology coupling surface plasmon resonance to mass spectrometry to find binding partners to Cav-1. An interaction between Cav-1 and alpha-synclein was found and confirmed in reciprocal pulldown experiments. Genetic overexpression of alpha-synclein in mouse neuroblastoma Neuro2A cells (N2A) expectedly decreased cell survival, but also significantly increased the levels of Cav-1. Furthermore, si-RNA-mediated knockdown of Cav-1 counteracted cell death induced by overexpression of alpha-synuclein. We also used an inhibitor of proteasome (MG132) to induce cell death in a Parkinson’s disease context. Cav-1 knockdown had no effect on cell death induced by MG132. Conversely, treating the cells with mevastatin, an inhibitor of cholesterol synthesis, inhibits cell death induced by MG132, but not by alpha synuclein overexpression. It can be concluded that Cav-1 may play a functional role in neuronal cells by virtue of its physical interaction with alpha-synuclein and regulate alpha synuclein-mediated actions on cell death, processes known to be involved in synucleinopathies including Parkinson’s disease.  相似文献   

19.
Some relationship between abnormal cholesterol content and impairment of insulin/insulin-like growth factor I (IGF-1) signaling has been reported in the pathogenesis of Alzheimer''s disease (AD). However, the underlying mechanism of this correlation remains unclear. It is known that 3-β hydroxycholesterol Δ 24 reductase (DHCR24) catalyzes the last step of cholesterol biosynthesis. To explore the function of cholesterol in the pathogenesis of AD, we depleted cellular cholesterol by targeting DHCR24 with siRNA (siDHCR24) or U18666A, an inhibitor of DHCR24, and studied the effect of the loss of cholesterol on the IGF-1-Akt signaling pathway in vitro and in vivo. Treatment with U18666A reduced the cellular cholesterol level and blocked the anti-apoptotic function of IGF-1 by impairing the formation of caveolae and the localization of IGF-1 receptor in caveolae of the PC12 cells. Downregulation of the DHCR24 expression induced by siRNA against DHCR24 also yielded similar results. Furthermore, the phosphorylation levels of IGF-1 receptor, insulin receptor substrate (IRS), Akt, and Bad in response to IGF-1 were all found to decrease in the U18666A-treated cells. Rats treated with U18666A via intracerebral injection also exhibited a significant decrease in the cholesterol level and impaired activities of IGF-1-related signaling proteins in the hippocampus region. A significant accumulation of amyloid β and a decrease in the expression of neuron-specific enolase (NSE) was also observed in rats with U18666A. Finally, the Morris water maze experiment revealed that U18666A-treated rats showed a significant cognitive impairment. Our findings provide new evidence strongly supporting that a reduction in cholesterol level can result in neural apoptosis via the impairment of the IGF-1-Akt survival signaling in the brain.  相似文献   

20.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号