首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文报道艰难梭菌A毒素对4种培养细胞的细胞致死活性的探讨。4种培养细胞为Vero(非洲绿猴肾细胞)细胞、TPC─1(人甲状腺肿瘤细胞)细胞、NIH3T3细胞(小鼠成纤维细胞)及将ras癌基因转基因于NIH3T3细胞的NIH3T3ras细胞。应用台酚蓝排除能试验、噻唑蓝(MTS)比色、细胞膜损害测定试验、荧光显微术观察细胞核的形态变化等测定A毒素细胞致死活性。实验表明:4种培养细胞系对A毒素细胞圆缩化作用的敏感性依次为NIH3T3ras,TPC─1,Vero,NIH3T3细胞。而对A毒素细胞致死活性的敏感性依次为TPC─1,NIH3T3,Vero,NIH3T3ras细胞。从而得知A毒素的细胞致死活性不但依细胞种类不同而不同,而且也不一定与A毒素的细胞圆缩化作用有关。肿瘤细胞TPC─1细胞对A毒素致死活性有特殊敏感性。以上结果对探索抗癌新药的研制具有重要意义。  相似文献   

2.
The effect of expression of the ras oncogene on protein glycosylation was studied. VSV G-protein and class I histocompatibility antigens were analysed to monitor ras-mediated changes in glycosylation. Transient expression of the c-Ha-ras oncogene, introduced into NIH 3T3 cells by the DEAE-dextran method, altered protein glycosylation within 25 h of transfection. The same result was obtained after dexamethasone-induced expression of p21-ras in stable NIH 3T3 transfectants containing either an activated Ha-ras oncogene or a normal N-ras proto-oncogene under control of the glucocorticoid-inducible MMTV promoter. The alteration of cell surface carbohydrates, induced by the ras (proto)oncogene and the subsequent acquisition of invasive potential, occurred prior to morphological transformation.  相似文献   

3.
Analysis of induction of glutamine synthetase activity by dexamethasone showed a 2-fold increase in NIH3T3 but no change in NIH3T3 ras (EJ-ras) cells. The observed increase could be abolished by the antagonist RU486. The lack of response in ras transformed cells might reflect oncoprotein effects on the glucocorticoid receptor (GR). Several GR parameters were studied in order to clarify this point. Total GR level was the same for both cells; cytoplasmic receptor level however, was 3 times lower in NIH3T3 ras than in NIH3T3 cells. Hormone-receptor binding affinity, specificity, thermostability, sedimentation coefficient, molecular weight as well as the cytoplasmic GR transformation ratio were similar for the two cell lines. On the other hand, the fraction of the total receptor pool involved with the recycling process was approximately 20% lower in NIH3T3 ras than in NIH3T3 cells. After 24 h of dexamethasone treatment, no GR down regulation was observed in NIH3T3 ras cells, whereas normal NIH3T3 cells exhibited a decrease of GR binding capacity around 80%. Further studies are necessary to define the mechanisms underlying the association between glucocorticoid insensitivity, and modifications in the GR nuclear/cytoplasmic ratio, in the recycling GR fraction and in the down-regulation process observed in ras transformed cells.  相似文献   

4.
Increased amounts of chromatin condensation (i.e., localized areas of high DNA density, or chromatin higher order packing state) have been described in NIH 3T3 cells transformed with the Ha-ras oncogene. The structural basis for this oncogene-mediated alteration in nuclear organization is unknown. Since DNA methylation is likely to be involved in regulating the nucleosomal level of DNA packaging, we studied the role of DNA methylation in higher-order chromatin organization induced by Ha-ras. CpG-methylated DNA content was estimated in "condensed" chromatin of Ha-ras-transformed NIH 3T3 cell lines which differ in ras expression and ras-induced metastatic ability but present approximately the same values of "condensed" chromatin areas. The question posed was that if DNA methylation were involved with the chromatin higher-order organization induced by Ha-ras in these cell lines, the methylated DNA density in the "condensed" chromatin would also be the same. The DNA evaluation was performed by video image analysis in Feulgen-stained cells previously subjected to treatment with Msp I and Hpa II restriction enzymes, which distinguish between methylated and non-methylated DNA. The amount of methylated CpG sequences not digested by Hpa II in "condensed" chromatin regions was found to vary in the studied ras-transformed cell lines. DNA CpG methylation status is thus suggested not to be involved with the higher order chromatin condensation induced by ras transformation in the mentioned NIH 3T3 cell lines.  相似文献   

5.
大鼠催乳素基因真核细胞可表达性质粒的构建及应用研究   总被引:4,自引:0,他引:4  
735bp的PRLcDNA片段从质粒PRL-SP65#1中回收后,用粘性末端连接法将其重组到真核表达载体pcDNA3上,筛选出正向连接重组体pcDNA3-PRLS和反向连接重组体pcDNA3-PRLAS。将重组体pcDNA3-PRLs和空载体pcDNA3分别转入NIH3T3细胞系,用G418筛选出阳性细胞后与未转染的NIH3T3细胞在加E2和不加E2的情况下,用原位杂交的方法,分别用PRLcDNA探针和原癌基因c-H-rascDNA探针进行检测,未转染的NIH3T3细胞在加E2和不加E2时都几乎无催乳素基因的表达,同样,转入空载体的NIH3T3细胞也无PRL的表达,而转入重组体pcDNA3-PRLS的NIH3T3细胞则有大量的PRL基因的表达,与对照组相比有显著差异(P<0.01)。正常和转入空载体的NIH3T3细胞有一定程度的原癌基因c-H-ras的表达,当分别加入E2和转入重组体pcDNA3-PRLS后,NIH3T3细胞中的c-H-ras基因表达水平都显著升高(P<0.05)。  相似文献   

6.
Two flat cellular revertant cell lines, F-2 and C-11, which were originally selected from the DT line of Kirsten murine sarcoma virus (Ki-MuSV)-transformed NIH/3T3 cells, were examined for the production of transforming growth factors (TGFs). The revertant cells fail to grow in semisolid medium as colonies and exhibit a markedly reduced level of tumorigenicity in nude mice, although they are known to express high levels of p21ras, the product of the Kirsten sarcoma virus oncogene, ras, and they contain a rescuable transforming virus. TGF activity associated with the transformed, revertant, and non-transformed cell lines was measured by the ability of concentrated conditioned medium (CM) from these cells to induce normal rat kidney (NRK) and NIH/3T3 cells to form colonies in semisolid agar suspension cultures and to inhibit the binding of 125I epidermal growth factor (EGF) to specific cell surface receptors. CM from the transformed DT cells and from both the F-2 and C-11 revertants contains TGF activity, in contrast to CM obtained from normal NIH/3T3 cells. Furthermore, unlike NIH/3T3 cells, neither the DT nor the revertant cells were able to bind 125I EGF. All four cell lines were able to proliferate in serum-free medium supplemented with transferrin, insulin, EGF, and Pedersen fetuin. However, in basal medium lacking these growth factors, only DT cells and, to a lesser extent, the revertant cells were able to grow. These results suggest that the F-2 and C-11 revertants fail to exhibit all of the properties associated with transformation because the series of events leading to the transformed phenotype is blocked at a point(s) distal both to the expression of the p21 ras gene product and also to the production of TGFs and that the production of TGFs may be necessary but not sufficient for maintaining the transformed state.  相似文献   

7.
8.
A Levitzki  J Rudick  I Pastan  W C Vass  D R Lowy 《FEBS letters》1986,197(1-2):134-138
The observed homology between G-proteins which regulate adenylate cyclase and ras proteins and the suggested role of ras in the regulation of adenylate cyclase in yeast prompted us to examine the regulation of adenylate cyclase in three cell lines: (i) NIH 3T3 cells, (ii) NIH 3T3 cells transformed by high levels of the normal rasH gene product and (iii) NIH 3T3 cells transformed by a mutated rasH gene product. We found that the regulation of adenylate cyclase by G-proteins is identical in the three cell lines, although the response of the transformed NIH 3T3 cells to agonists is strongly attenuated. Our data suggest that mammalian ras products do not interact directly with adenylate cyclase, although their increased expression may indirectly inhibit the interaction of adenylate cyclase stimulatory receptors with G-proteins.  相似文献   

9.
alpha B-crystallin, a major soluble protein of vertebrate eye lenses, is a small heat shock protein which transiently accumulates in response to heat shock and other kinds of stress in mouse NIH 3T3 fibroblasts. Ectopic expression of an alpha B-crystallin cDNA clone renders NIH 3T3 cells thermoresistant. alpha B-crystallin accumulates in response to the synthetic glucocorticoid hormone dexamethasone. Dexamethasone-treated NIH 3T3 cells become thermoresistant to the same extent as they accumulate alpha B-crystallin. A cell clone in which alpha B-crystallin is superinduced upon heat shock acquires augmented thermotolerance. Expression of the ras oncogene causes a rapid but transient accumulation of alpha B-crystallin within 1 day. Later, sustained ras oncogene expression suppresses the dexamethasone-mediated alpha B-crystallin accumulation. Thus, oncogenic transformation triggered by the ras oncogene interferes with hormone-mediated accumulation of alpha B-crystallin and concomitant acquisition of thermoresistance. Other known heat shock proteins do not accumulate in response to ectopic alpha B-crystallin expression or to dexamethasone treatment. These results indicate that alpha B-crystallin can protect NIH 3T3 fibroblasts from thermal shock.  相似文献   

10.
11.
Heart valve formation is initiated by an epithelial-mesenchymal cell transformation (EMT) of endothelial cells in the atrioventricular (AV) canal. Mesenchymal cells formed from cardiac EMTs are the initial cellular components of the cardiac cushions and progenitors of valvular and septal fibroblasts. It has been shown that transforming growth factor beta (TGFbeta) mediates EMT in the AV canal, and TGFbeta1 and 2 isoforms are expressed in the mouse heart while TGFbeta 2 and 3 are expressed in the avian heart. Depletion of TGFbeta3 in avian or TGFbeta2 in mouse leads to developmental defects of heart tissue. These observations raise questions as to whether multiple TGFbeta isoforms participate in valve formation. In this study, we examined the localization and function of TGFbeta2 and TGFbeta3 in the chick heart during EMT. TGFbeta2 was present in both endothelium and myocardium before and after EMT. TGFbeta2 antibody inhibited endothelial cell-cell separation. In contrast, TGFbeta3 was present only in the myocardium before EMT and was in the endothelium at the initiation of EMT. TGFbeta3 antibodies inhibited mesenchymal cell formation and migration into the underlying matrix. Both TGFbeta2 and 3 increased fibrillin 2 expression. However, only TGFbeta2 treatment increased cell surface beta-1,4-galactosyltransferase expression. These data suggest that TGFbeta2 and TGFbeta3 are sequentially and separately involved in the process of EMT. TGFbeta2 mediates initial endothelial cell-cell separation while TGFbeta3 is required for the cell morphological change that enables the migration of cells into the underlying ECM.  相似文献   

12.
Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Transfected ras oncogenes have been shown to induce metastatic properties in some cells. This altered behavior is likely due to changes in ras-mediated signal transduction pathways, resulting in altered expression of genes important to metastasis. Clarification of the mechanisms by which ras is able to induce metastatic ability in model systems will improve our understanding of tumor progression, even in those cells in which ras activation has not been implicated. Many of the consequences of ras expression also have been detected in cells that have become metastatic in the absence of altered ras, suggesting that there is a set of common changes that can lead to metastasis, with multiple signals capable of eliciting these changes. We have identified several changes in metastatic, ras-transformed NIH 3T3 cells that may contribute to their increased malignancy, including expression of proteolytic enzymes and their inhibitors, and adhesive and calcium-binding proteins. Not all cells, however, respond in this way to expression of oncogenic ras. We have found that murine LTA cells, which are tumorigenic but nonmetastatic, are ras resistant and remain nonmetastatic when expressing high levels of transfected ras, in contrast to NIH 3T3 cells, which are ras sensitive and become both tumorigenic and metastatic in response to comparable levels of ras. LTA cells differ in their patterns of gene expression in response to ras when compared with NIH 3T3 cells, suggesting that the two cell lines process the ras signal differently. Here we review our results with ras-transfected NIH 3T3 and LTA cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
Kim S  Lee YZ  Kim YS  Bahk YY 《Proteomics》2008,8(15):3082-3093
Point mutations in three kinds of Ras protein (H-, K-, and N-Ras) that specifically occur in codons 12, 13, and 61 facilitate virtually all of the malignant phenotype of the cancer cells, including cellular proliferation, transformation, invasion, and metastasis. In order to elucidate an understanding into the oncogenic ras networks by H-, K-, and N-Ras/G12V, we have established various oncogenic ras expressing NIH/3T3 mouse embryonic fibroblast clones using the tetracycline-induction system, which are expressing Ras/G12V proteins under the tight control of expression by an antibiotics, doxycycline. Here we provide a catalog of proteome profiles in total cell lysates derived from three oncogenic ras expressing NIH/3T3 cells and a good in vitro model system for dissecting the protein networks due to these oncogenic Ras proteins. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis, and MALDI-TOF MS analysis using the unique Tet-on inducible expression system. There were a large number of common targets for oncogenic ras, which were identified in all three cell lines and consisted of 204 proteins (61 in the pH range of 4-7, 63 in 4.5-5.5, and 80 in 5.5-6.7). Differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. Taken together, we implemented a 2-DE-based proteomics approach to the systematical analysis of the dysregulations in the cellular proteome of NIH/3T3 cells transformed by three kinds of oncogenic ras. Our results obtained and presented here show that the comparative analysis of proteome from oncogenic ras expressing cells has yielded interpretable data to elucidate the differential protein expression directly and/or indirectly, and contributed to evaluate the possibilities for physiological, and therapeutic targets. Further studies are in progress to elucidate the implications of these findings in the regulation of Ras induced transformation.  相似文献   

17.
Epithelial-mesenchymal transformation (EMT) in response to TGFbeta1 is a coordinated process of tissue morphogenesis that occurs during embryonic development as well as during certain pathologic events including kidney tubulointerstitial fibrosis. It is characterized by the disassembly of cell-cell junctions and dramatic alterations in the actin cytoskeleton that facilitates cell-matrix adhesion and stimulates migration. The focal adhesion adapter protein, Hic-5, has previously been reported to be upregulated during TGFbeta1-induced EMT in mouse mammary epithelial cells and the current study recapitulates this result in both mouse kidney proximal tubule epithelial, MCT, cells and human mammary epithelial, MCF10A, cells. To evaluate a causative role for Hic-5 in EMT, Hic-5 RNA interference (siRNA) was used to prevent Hic-5 expression in response to TGFbeta1 stimulation and was shown to suppress cell migration and actin stress fiber formation. It also resulted in the retention of a robust epithelial cell morphology characterized by elevated E-cadherin protein expression and well-organized adherens junctions. In addition, Hic-5 siRNA treatment led to the suppression of TGFbeta1 induction of RhoA activation. In contrast, forced expression of Hic-5 led to the formation of ROCK-dependent actin stress fibers. Furthermore, the induction of Hic-5 expression in response to TGFbeta1 was shown to be a RhoA/ROCK I-dependent process. Together, these data implicate Hic-5 as a key regulator of EMT and suggest that RhoA stimulated Hic-5 expression in response to TGFbeta1 may be functioning in a feed forward mechanism whereby Hic-5 maintains the mesenchymal phenotype through sustained RhoA activation and signaling.  相似文献   

18.
Amplification and activation of c-Ki-ras gene was studied in normal human pancreas and a cell line (T-3) derived from normal pancreas explants exposed to methylnitrosourea (MNU) for 26 weeks. Normal genomic DNAs from pancreas and derived cell lines showed no transforming activity in NIH 3T3 cells. However, DNAs isolated from tumorigenic cell line derived from MNU treated human pancreas explants transformed NIH 3T3 cells. The hybridization profiles showed that the c-Ki-ras gene was amplified 5 fold in the tumorigenic cells (T-3). The level of mRNA specific to the c-Ki-ras gene was found to be 50-60 fold higher in the malignant cells than in normal human pancreas. These results suggest that higher expression of ras genes is due to gene amplification and/or activation, which is an important step in carcinogenesis.  相似文献   

19.
EK-3 cells, previously isolated by us from cultures of NIH 3T3, require both ras and myc oncogenes for efficient transformation, while their parent cells are readily transformed by ras alone. We transfected the EK-3 cells with the v-Ha-ras oncogene and obtained several sublines which integrated this gene and transcribed it successfully. The ras-NIH 3T3 formed foci of multilayered cells that were piling up in culture, while the ras-EK-3 cells remained contact inhibited. Furthermore, when the growth of the cells in soft agar was examined, a clear difference was observed. Cells of the ras-NIH 3T3 clonal lines showed high efficiency of growth (10%), while the ras-EK-3 cells exhibited low efficiency (0.2%). The latter being quite similar to that of the non-transfected NIH 3T3 and EK-3 cells (0.05%). The results presented now, showing that ras-EK-3 cells are more anchorage dependent than the ras-NIH 3T3 cells, clearly indicate that differences, previously shown to exist between EK-3 and NIH 3T3 cells, persist in their daughter cell lines derived following transfection with the Ha-ras oncogene.  相似文献   

20.
A mouse genomic clone was isolated by cross-hybridization with a DNA fragment which codes for the NH2-propeptide of chick alpha1(III) collagen. The region of cross-hybridization within the mouse clone was localized, its sequence determined, and an exon coding for the NH2-propeptide of mouse alpha1(III) collagen was identified. This DNA fragment hybridizes to an RNA species of approximately 5300 nucleotides, slightly larger than the major alpha2(I) collagen RNA species. The mouse type III collagen probe was used to examine the effect of transformation on alpha1(III) collagen RNA levels in mouse fibroblasts. The levels of type III and type I collagen mRNA levels were compared in control and sarcoma virus-transformed murine cell lines, as well as in NIH 3T3 cells transformed by members of the human ras oncogenes. The levels of type III RNA decreased about 10-15-fold in Moloney sarcoma virus-transformed cells and in a cell line transformed with a v-mos-containing plasmid, but showed only a 50% decrease in a Kirsten murine sarcoma virus-transformed BALB 3T3 cell line, and increased 4-fold in a Rous sarcoma virus (RSV)-transformed BALB 3T3 cell line. In contrast, the levels of alpha2(I) collagen mRNA are 8- to 10-fold lower in all these cell lines when compared to untransformed cells. NIH 3T3 cells transformed with two human ras oncogenes showed decreased levels of alpha2(I) and alpha1(III) mRNAs. In contrast to the RSV-transformed mouse cell line, RSV-transformed chick embryo fibroblasts contained much smaller amounts of type III RNA than control chick embryo fibroblasts. We conclude that the levels of alpha1(III) and alpha2(I) collagen mRNA are often but not necessarily coordinately regulated by transformation in mouse cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号