首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductase and ferredoxin (an effective electron acceptor) were purified from the hyperthermophilic archaeon, Sulfolobus solfataricus P1 (DSM1616). The purified ferredoxin is a monomeric protein with an apparent molecular mass of approximately 11 kDa by SDS-PAGE and of 11,180+/-50 Da by MALDI-TOF mass spectrometry. Ferredoxin was identified to be a dicluster, [3Fe-4S][4Fe-4S], type ferredoxin by spectrophotometric and EPR studies, and appeared to be zinc-containing based on the shared homology of its N-terminal sequence with those of known zinc-containing ferredoxins. On the other hand, the purified 2-oxoacid: ferredoxin oxidoreductase was found to be a heterodimeric enzyme consisting of 69 kDa alpha and 34 kDa beta subunits by SDS-PAGE and MALDI-TOF mass spectrometry. The purified enzyme showed a specific activity of 52.6 units/mg for the reduction of cytochrome c with 2-oxoglutarate as substrate at 55 degrees C, pH 7.0. Maximum activity was observed at 70 degrees C and the optimum pH for enzymatic activity was 7.0 -8.0. The enzyme displays broad substrate specificity toward 2-oxoacids, such as pyruvate, 2-oxobutyrate, and 2-oxoglutarate. Among the 2-oxoacids tested (pyruvate, 2-oxobutyrate, and 2-oxoglutarate), 2-oxoglutarate was found to be the best substrate with Km and kcat values of 163 microM and 452 min(-1), respectively. These results provide useful information for structural studies on these two proteins and for studies on the mechanism of electron transfer between the two.  相似文献   

2.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

3.
Pyruvate:ferredoxin oxidoreductase was purified to electrophoretic homogeneity from an aerobic, thermophilic, obligately chemolithoautotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, by precipitation with ammonium sulfate and fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The native enzyme had a molecular mass of 135 kDa and was composed of four different subunits with apparent molecular masses of 46, 31.5, 29, and 24.5 kDa, respectively, indicating that the enzyme has an αβγδ-structure. The activity was detected with pyruvate, coenzyme A, and one of the following electron acceptors in substrate amounts: ferredoxin isolated from H. thermophilus, FAD, FMN, triphenyltetrazolium chloride, or methyl viologen. NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective as the electron acceptor. The temperature optimum for pyruvate oxidation was approximately 80° C. The pH optimum was 7.6–7.8. The apparent K m values for pyruvate and coenzyme A at 70° C were 3.45 mM and 54 μM, respectively. The enzyme was extremely thermostable under anoxic conditions; the time for a 50% loss of activity (t 50%) at 70° C was approximately 8 h. Received: 9 September 1996 / Accepted: 27 December 1996  相似文献   

4.
NAD(P)H:rubredoxin oxidoreductase (NROR) has been purified from the hyperthermophilic archaeon Pyrococcus furiosus. The enzyme is exceedingly active in catalyzing the NADPH-dependent reduction of rubredoxin, a small (5.3-kDa) iron-containing redox protein that had previously been purified from this organism. The apparent Vmax at 80 degrees C is 20,000 micromol/min/mg, which corresponds to a kcat/Km value of 300,000 mM(-1) s(-1). The apparent Km values measured at 80 degrees C and pH 8.0 for rubredoxin, NADPH, and NADH were 50, 5, and 34 microM, respectively. The enzyme did not reduce P. furiosus ferredoxin. NROR is a monomer with a molecular mass of 45 kDa and contains one flavin adenine dinucleotide molecule per mole but lacks metals and inorganic sulfide. The possible physiological role of this hyperactive enzyme is discussed.  相似文献   

5.
The oxidation of F420H2 (reduced coenzyme F420) is a key reaction in the final step of methanogenesis. This step is catalyzed in Methanolobus tindarius by the membrane-bound F420H2-dehydrogenase which was purified 31-fold to apparent homogeneity. The apparent molecular mass of the native enzyme was 120 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of five different subunits of apparent molecular masses of 45 kDa, 40 kDa, 22 kDa, 18 kDa and 17 kDa. The purified F420H2-dehydrogenase, which was yellowish, contained 16 +/- 2 mol iron and 16 +/- 3 mol acid-labile sulfur/mol enzyme. No flavin could be detected. The oxygen-stable enzyme catalyzed the oxidation of F420H2 (apparent Km = 5.4 microM) with methylviologen and metronidazole as electron acceptors at a specific rate of 13 mumol.min-1.mg-1 (kcat = 25.5 s-1). The isoelectric point was at pH 5.0. The temperature optimum was at 37 degrees C and the pH optimum at 6.8.  相似文献   

6.
The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. A gene cluster, porEDABG, encoding pyruvate:ferredoxin oxidoreductase (POR), which plays a key role in this cycle, was cloned and sequenced. The nucleotide sequence and the gene organization were similar to those of the five subunit-type 2-oxoglutarate:ferredoxin oxidoreductase from this strain, although the anabolic POR had been previously reported to consist of four subunits. A small protein (8 kDa) encoded by porE, which had not been detected in the previous work, was identified in the purified recombinant POR expressed in Escherichia coli, indicating that the enzyme is also a five-subunit type. Incorporation of PorE in the wild-type POR enzyme was confirmed by immunological analysis. PorA, PorB, PorG, and PorE were similar to the alpha, beta, gamma, and delta subunits of the four subunit-type 2-oxoacid oxidoreductases, respectively, and had conserved specific motifs. PorD had no specific motifs but was essential for the expression of the active enzyme.  相似文献   

7.
Archaeoglobus fulgidus is a hyperthermophilic sulfate-reducing archaeon. In this communication we describe the purification and properties of pyruvate: ferredoxin oxidoreductase from this organism. The catabolic enzyme was purified 250-fold to apparent homogeneity with a yield of 16%. The native enzyme had an apparent molecular mass of 120 kDa and was composed of four different subunits of apparent molecular masses of 45, 33, 25, and 13 kDa, indicating and structure. Per mol, the enzyme contained 0.8 mol thiamine pyrophosphate, 9 mol non-heme iron, and 8 mol acid-labile sulfur. FAD, FMN, lipoic acid, and copper were not found. The purified enzyme showed an apparent K m for coenzyme A of 0.02 mM, for pyruvate of 0.3 mM, and for clostridial ferredoxin of 0.01 mM, an apparent V max of 64 U/mg (at 65°C) with a pH optimum near 7.5 and an Arrhenius activation energy of 75 kJ/mol (between 30 and 70°C). The temperature optimum was above 90°C. At 90°C, the enzyme lost 50% activity within 60 min in the presence of 2 M KCl. The enzyme did not catalyze the oxidation of 2-oxoglutarate, indolepyruvate, phenylpyruvate, glyoxylate, and hydroxypyruvate. The N-terminal amino acid sequences of the four subunits were determined. The sequence of the -subunit had similarities to the N-terminal amino acid sequence of the -subunit of the heterotetrameric pyruvate: ferredoxin oxidoreductase from Pyrococcus furiosus and from Thermotoga maritima, and unexpectedly, to the N-terminal amino acid sequence of the homodimeric pyruvate: ferredoxin oxidoreductase from proteobacteria and from cyanobacteria. No sequence similarities were found, however, between the -subunits of the enzyme from A. fulgidus and the heterodimeric pyruvate: ferredoxin oxidoreductase from Halobacterium halobium.Abbreviations CoASH Coenzyme A - F 420 Coenzyme F420  相似文献   

8.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3.) of the extreme thermophilic archaebacterium Sulfolobus solfataricus was purified to homogeneity by (NH4)2SO4 fractionation, anion-exchange chromatography and affinity chromatography on 5'-AMP-Sepharose. The purified native enzyme had a Mr of about 270,000 and was shown to be a hexamer of subunit Mr of 44,000. It was active from 30 to 95 degrees C, with a maximum activity at 85 degrees C. No significant loss of enzyme activity could be detected, either after incubation of the purified enzyme at 90 degrees C for 60 min, or in the presence of 4 M urea or 0.1% SDS. The enzyme was catalytically active with both NADH and NADPH as coenzyme and was specific for 2-oxoglutarate and L-glutamate as substrates. With respect to coenzyme utilization the Sulfolobus solfataricus glutamate dehydrogenase resembled more closely the equivalent enzymes from eukaryotic organisms than those from eubacteria.  相似文献   

9.
The distribution of dye-linked L-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked L-proline dehydrogenase (dye-L-proDH, L-proline:acceptor oxidoreductase) was found in the crude extract of some Thermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (alpha(2) beta(2)) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the alpha-subunit (50-kDa subunit) and the beta-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-L-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70 degrees C for 10 min, and ca. 40% of the activity still remained after heating at 80 degrees C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50 degrees C for 10 min. The enzyme exclusively catalyzed L-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for L-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Delta(1)-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of L-proline at concentrations from 0.10 to 2.5 mM using the stable dye-L-proDH was achieved.  相似文献   

10.
2-Ketoisovalerate ferredoxin oxidoreductase (VOR) is a key enzyme in hyperthermophiles catalyzing the coenzyme A-dependent oxidative decarboxylation of mainly aliphatic amino acid-derived 2-keto acids. The very oxygen-labile enzyme purified under anaerobic conditions from a hyperthermophilic archaeon, Thermococcus profundus, is a hetero-octamer (alphabetagammadelta)(2) consisting of four different subunits, alpha = 45,000, beta = 31,000, gamma = 22,000 and delta = 13,000, respectively. Electron paramagnetic resonance and resonance Raman spectra of the purified enzyme indicate the presence of approximately three [4Fe-4S] clusters per alphabetagammadelta-protomer, although one of the clusters has a tendency to be converted to a [3Fe-4S] form during purification. The optimal temperature for the enzyme activity is 93 +/- 2 degrees C and the cognate [4Fe-4S] ferredoxin serves as an electron acceptor of the enzyme. The purified enzyme is highly oxygen-labile (t(1/2), approximately 5 min at 25 degrees C), and is partly protected in the presence of magnesium ions, thiamine pyrophosphate and sodium chloride (t(1/2), approximately 25 min at 25 degrees C).  相似文献   

11.
The conversion of [(14)C]benzoyl-coenzyme A (CoA) to nonaromatic products in the denitrifying beta-proteobacterium Azoarcus evansii grown anaerobically on benzoate was investigated. With cell extracts and 2-oxoglutarate as the electron donor, benzoyl-CoA reduction occurred at a rate of 10 to 15 nmol min(-1) mg(-1). 2-Oxoglutarate could be replaced by dithionite (200% rate) and by NADPH ( approximately 10% rate); in contrast NADH did not serve as an electron donor. Anaerobic growth on aromatic compounds induced 2-oxoglutarate:acceptor oxidoreductase (KGOR), which specifically reduced NADP(+), and NADPH:acceptor oxidoreductase. KGOR was purified by a 76-fold enrichment. The enzyme had a molecular mass of 290 +/- 20 kDa and was composed of three subunits of 63 (gamma), 62 (alpha), and 37 (beta) kDa in a 1:1:1 ratio, suggesting an (alphabetagamma)(2) composition. The native enzyme contained Fe (24 mol/mol of enzyme), S (23 mol/mol), flavin adenine dinucleotide (FAD; 1.4 mol/mol), and thiamine diphosphate (0.95 mol/mol). KGOR from A. evansii was highly specific for 2-oxoglutarate as the electron donor and accepted both NADP(+) and oxidized viologens as electron acceptors; in contrast NAD(+) was not reduced. These results suggest that benzoyl-CoA reduction is coupled to the complete oxidation of the intermediate acetyl-CoA in the tricarboxylic acid cycle. Electrons generated by KGOR can be transferred to both oxidized ferredoxin and NADP(+), depending on the cellular needs. N-terminal amino acid sequence analysis revealed that the open reading frames for the three subunits of KGOR are similar to three adjacently located open reading frames in Bradyrhizobium japonicum. We suggest that these genes code for a very similar three-subunit KGOR, which may play a role in nitrogen fixation. The alpha-subunit is supposed to harbor one FAD molecule, two [4Fe-4S] clusters, and the NADPH binding site; the beta-subunit is supposed to harbor one thiamine diphosphate molecule and one further [4Fe-4S] cluster; and the gamma-subunit is supposed to harbor the CoA binding site. This is the first study of an NADP(+)-specific KGOR. A similar NADP(+)-specific pyruvate oxidoreductase, which contains all domains in one large subunit, has been reported for the mitochondrion of the protist Euglena gracilis and the apicomplexan Cryptosporidium parvum.  相似文献   

12.
研究液体发酵嗜热毛壳菌(Chaetomium thermophilum)产生的一种外切葡聚糖纤维二糖水解酶的分离纯化及特性。粗酶液经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Sephacryl S-100分子筛层析、Q Sepharose Fast Flow强阴离子层析等步骤后获得凝胶电泳均一的外切葡聚糖纤维二糖水解酶。经12.5%SDS-PAGE和凝胶过滤层析方法测得该酶的分子量大小约为66.3kDa和67.1kDa。该酶反应的最适温度和pH值分别为65℃和5.0。在60℃以下酶比较稳定,在70℃酶的半衰期为1h,在80℃下保温20min仍具有20%的活性,该酶的热稳定性较中温真菌的同类酶高,与国外报道的嗜热真菌的同类酶热稳定性接近。以pNPC为底物的Km值为0.956mmol/L。  相似文献   

13.
Nitrogen starvation enhances up to 8-fold the cellular level of the NADP+-dependent isocitrate dehydrogenase activity (isocitrate:NADP+ oxidoreductase (decarboxylating), IDH, EC 1.1.1.42) in the thermophilic filamentous non-N2-fixing cyanobacterium Phormidium laminosum. The enzyme was purified 650-fold to electrophoretic homogeneity from nitrogen-starved cells with an activity yield of 25% and a specific activity of 500 U (mg protein)-1. The native enzyme showed a pI of 5.9 and it was a dimer of 107 kDa consisting of two identical subunits of 53 kDa. The activity required the presence of a divalent metal cation as an essential activator, Mn2+ or Mg2+ being the most effective. The optimum temperature for activity was 55 degrees C and the Ea for catalysis was 39.7 kJ mol-1. An optimum pH for activity of 8.5 was found and the calculated pKE1, pKE2 and pKES1 of enzyme ionisation groups were 6.0, 8.9 and 6.3, respectively. Km values of 22, 50 and 24 microM were calculated for d,l-isocitrate, NADP and Mn2+, respectively, in the Mn2+-dependent reaction and 70, 32 and 159 microM for d,l-isocitrate, NADP and Mg2+, respectively, in the Mg2+-dependent reaction. The decarboxylating activity was inhibited by ATP, ADP and by its reaction products 2-oxoglutarate and NADPH2. Polyclonal antibodies raised against the pure IDH were used to assess the presence of the enzyme in cells subjected to nitrogen starvation.  相似文献   

14.
Pierre Forget 《Biochimie》1982,64(11-12):1009-1014
A thermostable ferredoxin was purified from Clostridium thermocellum. The final preparation was homogeneous as judged by electrophoresis in sodium dodecyl sulfate polyacrylamide gel and sedimentation equilibrium. It contains eight atoms of iron and eight acid-labile sulfur groups per molecule, the molecular weight is estimated to be 6 400 and the isoelectric point 3.35. Its amino-acid composition is characterized by the absence of histidine residues and the presence of eight cysteine residues. The absorption spectrum has a maximum at 390 nm with a molar absorption coefficient of 39 x 10(3) M1 cm-1, similar to that of other bacterial eight iron ferredoxins. The purified ferredoxin has high thermal stability, since the spectrophotometric absorption of the protein at 390 nm did not change after one hour at 70 degrees C and only thirty five per cent of absorbance were lost after one hour at 80 degrees C. With regard to the electron carrier activity, the stability is slightly higher, only twenty five per cent of the activity were lost after one hour at 80 degrees C. During pyruvate oxidation, ferredoxin functions in the transfer of electrons to hydrogenase and also in the back reaction during pyridine nucleotide reduction by a ferredoxin -NAD oxidoreductase using hydrogen as electron donor.  相似文献   

15.
The ferredoxin:NADP+ oxidoreductase of the protist Cyanophora paradoxa, as a descendant of a former symbiotic consortium, an important model organism in view of the Endosymbiosis Theory, is the first enzyme purified from a formerly original endocytobiont (cyanelle) that is found to be encoded in the nucleus of the host. This cyanoplast enzyme was isolated by FPLC (19% yield) and characterized with respect to the uv-vis spectrum, pH optimum (pH 9), molecular mass of 34 kDa, and an N-terminal amino acid sequence (24 residues). The enzyme shows, as known from other organisms, molecular heterogeneity. The N-terminus of a further ferredoxin:NADP+ oxidoreductase polypeptide represents a shorter sequence missing the first four amino acids of the mature enzyme.  相似文献   

16.
The photolyase gene from Thermus thermophilus was cloned and sequenced. The characteristic absorption and fluorescence spectra of the purified T. thermophilus photolyase suggested that the protein has flavin adenine dinucleotide as a chromophore. The second chromophore binding site was not conserved in T. thermophilus photolyase. The purified enzyme showed light-dependent photoreactivation activity in vitro at 35 and 65 degrees C and was stable when subjected to heat and acidic pH.  相似文献   

17.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

18.
Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals.  相似文献   

19.
Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and 70 degrees C, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both NAD(+) and NADP(+) as electron acceptors, displaying more affinity for NADP(+) than for NAD(+). No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at 100(o)C for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.  相似文献   

20.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号