首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of ammonium and glutamine supply on amino acid levels and the activity of glucose-6P dehydrogenase (G6PDH EC 1.1.1.49), the main regulated enzyme of the oxidative pentose phosphate pathway, were investigated in barley roots ( Hordeum vulgare cv. Alfeo). Feeding ammonium to barley plants increased the contents of glutamine, asparagine and G6PDH in roots. These effects were abolished by using inhibitors of glutamine synthetase. Glutamine-fed barley roots showed a similar increase in G6PDH activities to ammonium-fed plants. Two G6PDH enzymes (G6PDH 1 and 2) were partially purified and characterized from ammonium-fed and glutamine-fed roots. The isozymes had different pH optima and apparent Km values for glucose-6P. G6PDH 2 showed similar kinetic parameters to the G6PDH present in root extracts of barley grown without any nitrogen source, while G6PDH 1 exhibited different kinetic parameters, suggesting the appearance of a second G6PDH isoform in response to ammonium. Western blot analysis demonstrated the existence of two G6PDH subunits of different molecular mass in barley roots grown in the presence of ammonium or glutamine, while only one isoform could be detected in roots grown without any nitrogen source. The results suggest a primary role of ammonium and/or glutamine in the appearance of a novel G6PDH isoform; this enzyme (G6PDH 1) shows kinetic parameters similar to those measured previously for chloroplastic and plastidic isoforms and seems to be induced by changes in glutamine content or a related compound(s) in the roots.  相似文献   

2.
Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide (O2-1) and peroxide (O2-2) generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60 kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by beta-naphthoquinone-4-sulfonic acid suggests the involvement of lysine at their active sites. Cu2+ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and 30 degrees .  相似文献   

3.
Two different isoforms of glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) have been partially purified from barley (Hordeum vulgare L., cv. Alfeo) roots. The procedure included an ammonium sulfate step, Q-Sepharose and Reactive Blue agarose chromatography, and led to 60-fold and 150-fold purification for the two enzymes, respectively. The Glc6PDH 1 isoform accounts for 17% of total activity of the enzyme in roots, and is very sensitive to the effects of NADP+/NADPH ratio and dithiothreitol; the Glc6PDH 2 isoform is less affected by reducing power and represents 83% of the total activity. The isoforms showed distinct pH optima, isoelectric points, K m for glucose-6-phosphate and a different electrophoretic mobility. The kinetic properties for the two enzymes were affected by ATP and metabolites. Both enzymes are inhibited to different extents by ATP when magnesium is omitted from the assay mixture, whereas the addition of ATP-Mg2+ had no effect on Glc6PDH activities. The Glc6PDH isoforms are usually present in the plastids and cytosol of plant cells. To verify the intracellular locations of the enzymes purified from barley roots, Glc6PDH was purified from isolated barley root plastids; this isoform showed kinetic parameters coincident with those found for Glc6PDH 1, suggesting a plastid location; the enzyme purified from the soluble fraction had kinetic parameters resembling those of Glc6PDH 2, confirming that this isoform is present in the cytosol of barley roots. Received: 21 June 2000 / Accepted: 28 July 2000  相似文献   

4.
5.
The gsdA gene of the extreme thermophilic bacterium Aquifex aeolicus, encoding glucose-6-phosphate dehydrogenase (G6PDH), was cloned into a high-expression vector and overexpressed as a fusion protein in Escherichia coli. Here we report the characterization of this recombinant thermostable G6PDH. G6PDH was purified to homogeneity by heat precipitation followed by immobilized metal affinity chromatography on a nickel-chelate column. The data obtained indicate that the enzyme is a homodimer with a subunit molecular weight of 55 kDa. G6PDH followed Michaelis-Menten kinetics with a K(M) of 63 micro M for glucose-6-phosphate at 70 degrees C with NADP as the cofactor. The enzyme exhibited dual coenzyme specificity, although it showed a preference in terms of k(cat)/ K(M) of 20.4-fold for NADP over NAD at 40 degrees C and 5.7-fold at 70 degrees C. The enzyme showed optimum catalytic activity at 90 degrees C. Modeling of the dimer interface suggested the presence of cysteine residues that may form disulfide bonds between the two subunits, thereby preserving the oligomeric integrity of the enzyme. Interestingly, addition of dithiothreitol or mercaptoethanol did not affect the activity of the enzyme. With a half-life of 24 h at 90 degrees C and 12 h at 100 degrees C, this is the most thermostable G6PDH described.  相似文献   

6.
7.
In a recent paper (Wenderoth et al., J Biol Chem 272: 26985–26990, 1997) we reported that the positions of the two redox regulatory cysteines identified in a plastidic G6PD isoform from potato (Solanum tuberosum L.) differ substantially from those conserved in cyanobacterial G6PDH sequences. To investigate the origin of redox regulation in G6PDH enzymes from photoautotrophic organisms, we isolated and characterized several G6PD cDNA sequences from higher plants and from a green and a red alga. Alignments of the deduced amino acid sequences showed that the cysteine residues cluster in the coenzyme-binding domain of the plastidic isoforms and are conserved at three out of six positions. Comparison of the mature proteins and the signal peptides revealed that two different plastidic G6PDH classes (P1 and P2) evolved from a common ancestral gene. The two algal sequences branch off prior to this class separation in higher plants, sharing about similar amino acid identity with either of the two plastidic G6PDH classes. The genes for cytosolic plant isoforms clearly share a common ancestor with animal and fungal G6PDH homologues, whereas the cyanobacterial isoforms branch within the eubacterial G6PDH sequences. The data suggest that cysteine-mediated redox regulation arose independently in G6PDH isoenzymes of eubacterial and eukaryotic lineages.  相似文献   

8.
A divalent cation-independent and spermine-stimulated phosphatase (protein phosphatase SP) that is active toward the phosphorylated pyruvate dehydrogenase complex has been purified about 15,000-fold to near homogeneity from extracts of bovine kidney mitochondria. Half-maximal stimulation, 1.5- to 3-fold at pH 7.0-7.3, occurred at 0.5 mM spermine. Protein phosphatase SP exhibited an apparent Mr = 140,000-170,000 as estimated by gel-filtration chromatography on Sephacryl S-300. Two major subunits, with apparent Mr = 60,000 and 34,000, were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel-permeation chromatography of protein phosphatase SP on Sephacryl S-200 in the presence of 6 M urea and 1.4 M NaCl increased its activity 3- to 6-fold and was accompanied by conversion to the catalytic subunit with an apparent Mr = approximately 34,000. Protein phosphatase SP was inactive with p-nitrophenyl phosphate and was not inhibited by protein phosphatase inhibitor 1, inhibitor 2, or the protein inhibitor of branched-chain alpha-keto acid dehydrogenase phosphatase. Protein phosphatase SP was inhibited by sheep antibody to the catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle. It appears that protein phosphatase SP is related to protein phosphatase 2A.  相似文献   

9.
In Chlorella sorokiniana (211/8k), glucose-6 phosphate dehydrogenase (G6PDH—EC 1.1.1.49) activity is similar in both N-starved cells and nitrate-grown algae when expressed on a PCV basis. A single G6PDH isoform was purified from Chlorella cells grown under different nutrient conditions; the presence of a single G6PDH was confirmed by native gels stained for enzyme activity and by Western blots. The algal G6PDH is recognised only by antibodies raised against higher plants plastidic protein, but not by chloroplastic and cytosolic isoform-specific antisera. Purified G6PDH showed kinetic parameters similar to plastidic isoforms of higher plants, suggesting a different biochemical structure which would confer peculiar regulative properties to the algal G6PDH with respect to higher plants enzymes. The most remarkable property of algal G6PDH is represented by the response to NADPH inhibition. The algal enzyme is less sensitive to NADPH effects compared to higher plants G6PDH: KiNADPH is 103 μM for G6PDH from nitrogen-starved C. sorokiniana, similarly to root plastidic P2-G6PDH. In nitrate-grown C. sorokiniana the KiNADPH decreased to 48 μM, whereas other kinetic parameters remained unchanged. These results will allow further investigations in order to rule out possible modifications of the enzyme, and/or the expression of a different G6PDH isoform during nitrate assimilation.  相似文献   

10.
11.
We describe a novel G6PD cDNA from potato. The deduced amino acid sequence shares 77% identity with the known chloroplast enzyme, but only 47% with the corresponding cytosolic G6PDH. The sequence comprises the two cysteine residues conserved in other redox-regulated chloroplast G6PDH and a transit peptide capable of directing a GFP fusion protein to chloroplasts, demonstrating that the cDNA codes for a second plastidic G6PD isoform. The mature part was expressed in E. coli. When synthesized with a C-terminal Strep tag, the enzyme retained G6PDH activity upon affinity purification. In the presence of reductively activated spinach thioredoxin, G6PDH activity decreased by about 50%. This protein-mediated activity loss was completely reversed by addition of oxidant. In contrast to the chloroplast enzyme (P1), the presence of reduced dithiothreitol alone destroyed the activity of the new G6PDH (P2), and incubation with GSH had no effect. The Km values determined for both substrates were significantly lower compared to those of P1. The high Vmax and Ki [NADPH] values indicate that the P2 enzyme is more active than P1 and less susceptible to feedback inhibition by its product NADPH. At the level of mRNA accumulation, differences between the two plastid-localized isoforms are most prominent in roots and growing tissues. Immunoblot analyses of isolated plastid preparations revealed that the two plastidic enzymes are present in both root and leaf tissue. The data obtained indicate that we have characterized a second plastidic G6PDH with distinct biochemical features.  相似文献   

12.
13.
Expression of one specific isoform of plastidic glucose 6-phosphate dehydrogenase (G6PDH) was manipulated in transgenic tobacco. Antisense and sense constructs of the endogenous P2 form of G6PDH were used to transform plants under the control of the cauliflower mosaic virus (CaMV) 35S promotor. Recombinant plants with altered expression were taken through to homozygosity by selective screening. Northern analyses revealed substantial changes in the expression of the P2 form of G6PDH, with no apparent impact on the activity of the cytosolic isoenzyme. Analysis of G6PDH activity in chloroplasts showed that despite the large changes in expression of P2-G6PDH, the range of enzyme activity varied only from approximately 50 to 200% of the wild type, reflecting the presence of a second G6PDH chloroplastic isoform (P1). Although none of the transgenic plants showed any visible phenotype, there were marked differences in metabolism of both sense and antisense lines when compared with wild-type/control lines. Sucrose, glucose and fructose contents of leaves were higher in antisense lines, whereas in overexpressing lines, the soluble sugar content was reduced below that of control plants. Even more striking was the observation that contents of glucose 6-phosphate (Glc6P) and 6-phosphogluconate (6PG) changed, such that the ratio of Glc6P:6PG was some 2.5-fold greater in the most severe antisense lines, compared with those with the highest levels of overexpression. Because of the distinctive biochemical properties of P2-G6PDH, we investigated the impact of altered expression on the contents of antioxidants and the response of plants to oxidative stress induced by methyl viologen (MV). Plants with decreased expression of P2-G6PDH showed increased content of reduced glutathione (GSH) compared to other lines. They also possessed elevated contents of ascorbate and exhibited a much higher ratio of reduced:oxidised ascorbate. When exposed to MV, leaf discs of wild-type and overexpressing lines demonstrated increased oxidative damage as measured by lipid peroxidation. Remarkably, leaf discs from plants with decreased P2-G6PDH did not show any change in lipid peroxidation in response to increasing concentrations of up to 15 micro m MV. The results are discussed from the perspective of the role of G6PDH in carbohydrate metabolism and oxidative stress. It is suggested that the activity of P2-G6PDH may be crucial in balancing the redox poise in chloroplasts.  相似文献   

14.
甜杨6-磷酸葡萄糖脱氢酶在抗冻性低温诱导中的作用   总被引:5,自引:0,他引:5  
对-20℃低温锻炼及脱锻炼过程中甜杨(Populus suaveolens)幼苗的G6PDH、SOD和POD活性、MDA含量和半致死温度(LT50)进行了测定和分析.结果发现,低温锻炼在一定程度上提高了幼苗6-磷酸葡萄糖脱氢酶(G6PDH)、SOD和POD活性,降低了MDA含量和幼苗半致死温度(LT50).另外,将幼苗放回常温(脱锻炼)2 d能引起幼苗的G6PDH、SOD和POD活性的显著下降,并使LT50和MDA含量的迅速回升.结果表明,低温锻炼中G6PDH活性的增加有助于SOD和POD活性的提高,进而对幼苗的LT50和MDA含量的降低有明显的促进作用,G6PDH可能参与了SOD和POD活性的调节和抗冻性的低温诱导.  相似文献   

15.
G6P脱氢酶(G6PDH)是氧化的戊糖磷酯途径中的第一个酶,它广泛存在于C_3、C_4、CAM植物和藻类植物体中(Herbert等1979)。在叶绿体和细胞质中都有分布。前人对该酶有较多研究(Dennis 和 Miernyk1982,Fickenscher 和 Scheibe 1986,  相似文献   

16.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) has been purified from potato tuber at least 850-fold to apparent homogeneity as judged by SDS-PAGE. The enzyme was characterized by Km values of 260 μM for glucose-6-phosphate and 6 μM for NADP and a broad pH optimum between phi 7.5 and 9. NADPH, GTP, ATP, acetyl CoA and CoA inhibited G6PDH activity. Dithiothreitol (DTT) did not inactivate the enzyme. A highly specific antiserum was produced in a rabbit and used for immunodetection of G6PDH in Western blots. A cDNA library from potato leaves was screened with DNA probes produced by the polymerase chain reaction (PCR) in the presence of g6pdh-specific primers. A full-length cDNA clone was analyzed and the derived amino acid sequence compared with known G6PDH sequences from various sources. The homology of the plant sequence with G6PDH sequences from animals and yeast was found to be rather high (52%), whereas there was significantly lower homology with sequences of bacterial origin (37%). The lack of a plastidic signal sequence as well as the insensitivity of the recombinant enzyme towards reduced DTT, support the view that the cDNA sequence of a redox-independent cytosolic isoform was obtained.  相似文献   

18.
Psychrophilic organisms have evolved a number of modifications of cellular structures to survive in the cold environment; among them it is worth noting an increased efficiency of enzymes at lower temperatures. Glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) was purified and characterised from the psychrophilic green alga Koliella antarctica (Trebouxiophyceae, Chlorophyta) from the Ross Sea (Antarctica). It was possible to isolate a single G6PDH using biochemical strategies; its maximum activity was measured at 35 °C, and the enzyme showed an E a of 39.6 kJ mol?1. This protein reacted with antibodies raised against higher plants plastidic isoforms. KaG6PDH showed peculiar kinetic properties, with a K iNADPH value lower than $ K_{{{\text{mNADP}}^{ + } }} $ . Notably, catalytic activity was inactivated in vitro by DTT and chloroplastic thioredoxin f. These biochemical properties of G6PDH are discussed with respect to higher plant G6PDHs and the adaptation of K. antarctica to polar low-temperature environment.  相似文献   

19.
1. Glucose-6-phosphate dehydrogenase (G6PDH) has been purified to homogeneity from rat and chick brain by affinity chromatography with Sepharose bound 2',5' ADP. 2. Some properties of the two enzymes are studied and the effects of hydrogen ion concentration, Mg2+ ions, temperature and urea on the initial rate of enzyme are described. 3. G6PDH from chick brain differs from the rat enzyme in affinity for 2',5' ADP Sepharose, in pH optimum, in heat stability and it is differently affected by Mg2+ ions. No effect is detectable after urea treatment on enzymes from both sources.  相似文献   

20.
An insulin-stimulated ribosomal protein S6 kinase from rabbit liver   总被引:14,自引:0,他引:14  
In this report we describe an activated form of S6 protein kinase in rabbits treated acutely with insulin. The major insulin-stimulated activity in rabbit liver is increased 2- to 5-fold compared to material from untreated animals based on DEAE-cellulose profiles. The activity observed in DEAE-cellulose fractions can be separated into a major and a minor peak, each having very similar chromatographic behavior. Chromatography on DEAE-cellulose, S-Sepharose, heptyl-Sepharose, heparin-agarose, and Mono Q results in greater than 20,000-fold purification of the insulin-stimulated enzyme with a 12% recovery. The stimulated activity has chromatographic properties similar to an S6 protein kinase studied previously in 3T3-L1 cells (Cobb, M. H. (1986) J. Biol. Chem. 261, 12994-12999) and other systems. The enzyme purified from insulin-treated animals contains a major band that migrates in sodium dodecyl sulfate-polyacrylamide gels with Mr congruent to 70,000; this band also appears in the control preparation. Treatment of the insulin-stimulated S6 kinase with the catalytic subunit of phosphatase 2a reduces its activity by 97%. The activity of the inactivated S6 kinase is stimulated nearly 5-fold by a 15-min preincubation with partially purified insulin-stimulated microtubule-associated protein-2 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号