首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   

2.
We estimated the effects of Bythotrephes longimanus invasion on the trophic position (TP) of zooplankton communities and lake herring, Coregonus artedi. Temporal changes in lacustrine zooplankton communities following Bythotrephes invasion were contrasted with non-invaded reference lakes, and along with published information on zooplankton and herring diets, formed the basis of estimated changes in TP. The TP of zooplankton communities and lake herring increased significantly following the invasion of Bythotrephes, whereas TP in reference lakes decreased (zooplankton) or did not change significantly (lake herring) over a similar time frame. Elevated TP following Bythotrephes invasion was most prominent in lakes that also supported the glacial relict, Mysis diluvania, suggesting a possible synergistic interaction between these two species on zooplankton community composition. Our analysis indicated that elevated TPs of zooplankton communities and lake herring are not simply due to the presence of Bythotrephes, but rather reflect changes in the zooplankton community induced by Bythotrephes; namely, a major reduction in the proportion of herbivorous cladoceran biomass and a concomitant increase in the proportion of omnivorous and/or predatory copepod biomass in invaded lakes. We demonstrated that increases in TP of the magnitude reported here can lead to substantial increases in fish contaminant concentrations. In light of these results, we discuss potential mechanisms that may be responsible for the disconnect between empirical and theoretical evidence that mid-trophic level species invasions (e.g., Bythotrephes) elevate contaminant burdens of consumer species, and provide testable hypotheses to evaluate these mechanisms.  相似文献   

3.
We here exploit two large datasets on zooplankton in Norwegian lakes, spanning a wide range of geographical, physical, chemical and biological properties, to assess the ecological niches and habitats of Bythotrephes longimanus and Leptodora kindtii. The species overlapped geographically, yet co-occurred only in a limited number of lakes. Bythotrephes inhabited virtually all types of lakes, except alpine localities and productive lakes dominated by cyprinid communities where the hyaline Leptodora was most abundant. The zooplankton communities also differed in Bythotrephes and Leptodora lakes, probably both reflecting different predatory regimes, but also water quality and other lake-specific properties. We found no evidence for species being excluded by the presence of Bythotrephes, rather the diversity in general was higher in lakes with these predators present compared with those without. We found, however, a very close association between Bythotrephes and Daphnia galeata and to some extent also between Bythotrephes and D. longispina, suggesting that these species also may benefit from Bythotrephes invasion. Both Bythotrephes and Leptodora species occur naturally in this region, and knowledge about the ecological preferences and the zooplankton community composition in Bythotrephes—and Leptodora lakes will provide valuable information about the long-term effects of Bythotrephes invasion and potential interaction with of Leptodora as top invertebrate predator.  相似文献   

4.
5.
As exotic species are introduced and spread across a heterogeneous landscape, the abundance and richness of potential competitor and prey species they encounter will vary. Little is known about the interactions between Bythotrephes longimanus and native predatory macroinvertebrates (e.g., Mysis, Chaoborus), which potentially limit the establishment and spread of the invader. An 80-lake survey was conducted in the summer of 2007 to obtain macroinvertebrate abundances across invaded and non-invaded lakes. A subset (15) of these lakes was surveyed more intensively to obtain stratified daytime and night-time distributions of the organisms. Overall co-occurrence of Bythotrephes with native macroinvertebrate predators was widespread across lakes indicating that the presence of native macroinvertebrates alone is unlikely to limit the establishment of Bythotrephes. However, we did find an effect of native macroinvertebrate predators on the vertical distribution of Bythotrephes: as native macroinvertebrate abundances increased, the relative abundance of Bythotrephes in the epilimnion increased. Furthermore, the relative abundance of some zooplankton prey (e.g., Daphnia) was lower in the epilimnion when Bythotrephes abundance was high. Although we cannot rule out consumptive effects, some evidence suggests an avoidance behavioural response in the prey. While the underlying mechanisms of these distributional shifts remain unclear, our results suggest that interactions between Bythotrephes, native macroinvertebrates and zooplankton prey are complex, highlighting the need to further examine these interactions.  相似文献   

6.
We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.  相似文献   

7.
8.
Monthly zooplankton samples taken during the period February, 1977 to February, 1978 in the deepest portion in two shallow sub-tropical Lakes, Begnas and Rupa in the Pokhara Valley, Nepal were studied. Four peaks of zooplankton abundance were noted. Adult and copepodid Copepoda were numerically dominant in both lakes with 56% Copepoda, 24% Cladocera and 20% nauplii in Lake Begnas and 48% Copepoda, 36% Cladocera and 16% nauplii in Lake Rupa. Other forms like Chaoborus larvae occurred sporadically in both lakes. An occurrence of the rare Limnocnida nepalensis (Coelenterata: Limnomedusae) in Lake Rupa was also noted during April and May, 1977. Although both of these lakes had already been ranked as eutrophic, the absence of calanoids, relative abundance of Bosmina longirostris and higher gross primary production in Lake Rupa is an indication of a higher trophic condition than that of Lake Begnas.  相似文献   

9.
Zooplankton spine induces aversion in small fish predators   总被引:2,自引:0,他引:2  
D. Rae Barnhisel 《Oecologia》1991,88(3):444-450
Summary The spined cladoceran Bythotrephes cederstroemi is protected from small fish predators due to the difficulty small fish have in ingesting the spine. Juvenile yellow perch (Perca flavescens) 50–60 mm in length were offered Bythotrephes with alternative prey available in two experiments. First, perch were observed as they gained experience with Bythotrephes and developed aversion to the zooplankter. Perch initially attacked and captured Bythotrephes. However, they struggled to ingest the spined zooplankter, rejected and recaptured it many times, and finally ceased to attack it. Second, perch were offered Bythotrephes with varying portions of the spine removed to clarify the spine's role in inducing such behaviors. Perch showed greater preference to attack nospine and half-spine Bythotrephes, and were less likely to reject and more likely to ingest Bythotrephes with the spine removed. For small or young fish that forage on zooplankton in lakes where Bythotrephes is present, aversion is an efficient response to the conspicuous but unpalatable spined cladoceran. However, aversion allows Bythotrephes, also a predator on zooplankton, to more effectively compete with young fish without an increase in predation risk.  相似文献   

10.
Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape‐limited predation (GLP) and nongape‐limited predation (NGLP) by fish. We found that natural selection varied by predator gape‐limitation, with strong selection (selection intensity: 0.20–0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators.  相似文献   

11.
1. It is often assumed that lakes highly influenced by terrestrial organic matter (TOM) have low zooplankton food quality because of elemental and/or biochemical deficiencies of the major particulate organic carbon pools. We used the biochemical [polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) – 20:5ω3] and elemental (C : P ratio) composition of particulate matter (PM) as qualitative measures of potential zooplankton food in two categories of lakes of similar primary productivity, but with contrasting TOM influence (clear water versus humic lakes). 2. C : P ratios (atomic ratio) in PM were similar between lake categories and were above 400. The concentration (μg L−1) and relative content (μg mg C−1) of EPA, as well as the particulate organic carbon concentration, were higher in the humic lakes than in the clear‐water lakes. 3. Our results show high fatty acid quality of PM in the humic lakes. The differences in the biochemical quality of the potential zooplankton food between lake categories can be attributed to the differences in their phytoplankton communities. 4. High biochemical quality of the food can result in high efficiency of energy transfer in the food chain and stimulate production at higher trophic levels, assuming that zooplankton are able to ingest and digest the resource available.  相似文献   

12.
The zooplankton communities of seven Rotorua, New Zealand, lakes of different trophic status were studied in 1977–78. They were generally dominated by the calanoid copepod, Calamoecia lucasi. Bosmina meridionalis occurred in all the lakes and Ceriodaphnia dubia in most. Only small numbers of Macrocyclops albidus ever occurred. Rotifers were not studied in detail. Community composition was similar to that in other northern New Zealand lakes. No well defined patterns of seasonal change in abundance were found and the timing of changes, which were of low magnitude, was different in each lake. Clutch sizes in all species were small. Calamoecia population parameters were analysed using multivariate methods and shown to be related to lake trophic level. Population densities were higher in more productive lakes whereas breeding levels were inversely related to indices of trophic status and population abundance. It is suggested that the populations, as in other northern New Zealand lakes, are food-limited, probably as a consequence of a lack of marked climatic seasonality and the absence of major predation pressures. Groupings of the lakes based on the Calamoecia data are in general agreement with those derived from parallel studies of water chemistry, phytoplankton and macrobenthos.  相似文献   

13.
1. Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. 2. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91‐m depth sites in northern Lake Huron, U.S.A., for each month, May–October 2007. Daily consumption was compared to daily zooplankton production. 3. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant – eating only 3% of all zooplankton consumed. 4. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. 5. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi‐, meta‐ and hypolimnion, leaving limited refuge for zooplankton prey.  相似文献   

14.
Jeppesen  E.  Søndergaard  M.  Kanstrup  E.  Petersen  B.  Eriksen  R. B.  Hammershøj  M.  Mortensen  E.  Jensen  J. P.  Have  A. 《Hydrobiologia》1994,275(1):15-30
The effects of nutrients on the biological structure of brackish and freshwater lakes were compared. Quantitative analysis of late summer fish, zooplankton, mysid and macrophyte populations was undertaken in 20–36 shallow brackish lakes of various trophic states and the findings compared with a similar analysis of shallow freshwater lakes based on either sampling (fish) or existing data (zooplankton, mysids and macrophytes). Special emphasis was placed on differences in pelagic top-down control. Whereas the fish biomass (CPUE, multiple mesh-size gill nets) rose with increasing P-concentration in freshwater lakes, that of brackish lakes was markedly reduced at P-concentrations above ca. 0.4 mg P l-1 and there was a concomitant shift to exclusive dominance by the small sticklebacks (Gasterosteus aculeatus and Pungitius pungitius); as a result, fish density remained relatively high. Mysids (Neomysis integer) were found at a salinity greater than 0.5 and increased substantially with increasing P-concentration, reaching levels as high as 13 ind. l-1. This is in contrast to the carnivorous zooplankton of freshwater lakes, which are most abundant at intermediate P levels. The efficient algal controller, Daphnia was only found at a salinity below 2 and N. integer in lakes with a salinity above 0.5. Above 2 the filter-feeding zooplankton were usually dominated by the less efficient algal controllers Eurytemora and Acartia. In contrast to freshwater lakes, no shift to a clearwater state was found in eutrophic brackish lakes when submerged macrophytes became abundant. We conclude that predation pressure on zooplankton is higher and algal grazing capacity lower in brackish eutrophic-hypertrophic lakes than in comparable freshwater lakes, and that the differences in trophic structure of brackish and freshwater lakes have major implications for the measures available to reduce the recovery period following a reduction in nutrient loading. From the point of view of top-down control, the salinity threshold dividing freshwater and brackish lakes is much lower than the conventionally defined 5.  相似文献   

15.
The relationship between fecundity and adult body weight in Homeotherms   总被引:3,自引:0,他引:3  
Summary Bythotrephes cederstroemii Schoedler, a predatory freshwater zooplankter (Crustacea: Cladocera), was first found in the Laurentian Great Lakes in December 1984. The first individuals were from Lake Huron, followed in 1985 with records from Lakes Erie and Ontario. By late August, 1986 the species had spread to southern Lake Michigan (43°N). Bythotrephes has not previously been reported from North America, but has been restricted to a northern and central Palearctic distribution. Its dramatic and widespread rise in abundance in Lake Michigan was greatest in offshore regions. Bythotrephes appears to be invading aggressively, but avoiding habitats presently occupied by glacio-marine relict species that became established in deep oligotrophic North American lakes after the Wisconsin glaciation. Because it is a voracious predator its invasion may lead to alterations in the native zooplankton fauna of the Great Lakes. It offers the chance to study how invading plankton species join an existing community. Judging from its persistence and success in deep European lakes, Bythotrephes may now become a permanent member of zooplankton communities in the Nearctic.  相似文献   

16.
1. Two enclosure experiments were carried out in Laguna Bufeos, a neotropical várzea lake located in the floodplain of River Ichilo (Bolivia). The experiments aimed (i) to assess the relative importance of bottom‐up and top‐down control on the plankton community, (ii) to assess the relative impact of direct and indirect effects of planktivorous fish on the zooplankton, and (iii) to attempt to identify the mechanisms responsible for these effects. 2. During the first experiment, bottom‐up control seemed to dominate the planktonic food web. Compared with fishless enclosures, oxygen concentrations, chlorophyll a levels and the population densities of all cladoceran zooplankton taxa increased in enclosures with fish. Birth rates of Moina minuta, the dominant taxon, were substantially higher in the presence than in the absence of fish, whereas death rates did not differ between treatments. These results are the first to suggest that the positive effects of fish on crustacean zooplankton via effects on nutrient cycling and the enhancement of primary production can compensate for losses because of fish‐related mortality. 3. During the second experiment, the direction of control appeared to vary between trophic levels: the phytoplankton appeared to be bottom‐up controlled whereas the zooplankton was mainly top‐down controlled. Chlorophyll a concentrations were enhanced by both fish and nutrient additions. The majority of the zooplankton taxa were reduced by the presence of fish. Birth rates of most cladoceran taxa did not differ between treatments, whereas death rates were higher in the enclosures with fish than in the fishless enclosures. Bosminopsis deitersi reached higher densities in the presence of fish, probably because of a release from predation by Chaoborus. 4. We convincingly showed strong deviations from trophic cascade‐based expectations, supporting the idea that trophic cascades may be weak in tropical lakes.  相似文献   

17.
Gulati  R. D. 《Hydrobiologia》1990,(1):99-118
Structure and grazing activities of crustacean zooplankton were compared in five lakes undergoing manipulation with several unmanipulated eutrophic (shallow) and mesotrophic (deep) lakes in The Netherlands. The biomanipulated lakes had lesser number of species and their abundance, both of rotifers and crustaceans, and had much larger mean animal size (3–11 μg C ind.−1) than in the unmanipulated eutrophic lakes (0.65 μG C ind.−1). WhereasD. hyalina (=D. galeata) andD. cucullata generally co-occurred in the unmanipulated lakes, in the manipulated lakes bothD. hyalina and other large-bodied daphnids,D. magna,D. pulex (=D. pulicaria), were the important grazers. In the biomanipulated lakes an increase in the individual crustacean size and of zooplankton mass were reflected in a decrease in seston concentration, higher Secchi-disc depth and a marked decrease in the share in phytoplankton biovolume of cyanobacteria. Biomass relationship between seston (150 μm) and zooplankton indicated a Monod type relationship, with an initial part of the curve in which the zooplankton responds linearly to the seston increase up to aboutca. 2 mg C l−1, followed by a saturation of zooplankton mass (0.39 mg C l−1) at 3–4 mg C l−1 seston, and an inhibitory effect on zooplankton mass at seston levels>4 mg C l−1. This latter is related to predominance in the seston of cyanobacteria. In the biomanipulated lakes, the zooplankton grazing rates often exceeded 100% d−1, during the spring, and food levels generally dropped to <0.5 mg C l−1. The computed specific clearance rate (SCR) of zooplankton of 1.9 l mg−1 Zoop C is well within the range of SCR values (1.7–2.2 l mg−1 Zoop C) from deep and mesotrophic waters, but about an order of magnitude higher than in the eutrophic lakes, with the food levels 10-fold higher. For 25% d−1 clearance of lake seston between 35 and 60 ind. l−1 are needed in the biomanipulated lakes against 1200–1300 ind. l−1 in eutrophic lakes. Similarly, about 10 to 15 times more crustacean grazers are required to eliminate the daily primary production in the eutrophic lakes than in the biomanipulated lakes. These numbers are inversely related to the differences in animal size. The corresponding biomass values of zooplankton needed to clear the daily primary production in the eutrophic waters were 0.1–0.2 mg C l−1 in the biomanipulated lakes, but about 0.45 mg C l−1 in the unmanipulated eutrophic waters. Only if the water was kept persistently clear by zooplankton was there a balanced seston budget between the inputvia primary production and elimination by zooplankton. Mostly, however, the input exceeded the assimilatory removal by zooplankton, such that the estimated seston loss could be attributed to sedimentation and mineralization.  相似文献   

18.
1. Bythotrephes cederstroemi (Crustacea: Onychopoda: Cercopagidae) invaded Harp Lake, Ontario in 1993, since when the zooplankton community has shifted from dominance of small-bodied to large-bodied species. During 1995 diets of adult lake herring (Coregonus artedii), Harp Lake’s primary planktivorous fish, were examined to determine the extent to which this conspicuous zooplankter has become integrated into the lake’s foodweb and whether fish condition has been affected in consequence. 2. Bythotrephes and Daphnia galeata mendotae were strongly preferred prey, whilst Holopedium gibberum and calanoid and cyclopoid copepods were negatively selected by lake herring. Predation on Bythotrephes and Holopedium was not size-selective, although D. galeata mendotae and calanoid copepods (Leptodiaptomus minutus and L. sicilis) consumed by herring were significantly larger than co-occurring conspecifics in the lake. 3. Caudal spines of Bythotrephes may form boluses in lake herring stomachs. However, the number of caudal spines in fish digestive tracts did not differ significantly from the number of Bythotrephes’ mandible pairs, indicating that the former were not differentially retained. 4. Lake herring weight-at-length relationships in lakes in Muskoka, Ontario, invaded by Bythotrephes did not differ from those in adjacent non-invaded lakes, indicating that Bythotrephes invasion of lakes apparently has not affected condition of lake herring.  相似文献   

19.
1. The weak diel vertical migration observed in the large cladoceran Bythotrephes longimanus seems contradictory to the predator‐avoidance hypothesis that predicts large zooplankton should have long migration amplitudes. However, cold‐water planktivores, especially Coregonus spp., are a main source of mortality for Bythotrephes and hence a deeper migration would result in a greater overlap with these hypolimnetic planktivores. We hypothesized that Coregonus artedi (cisco) modifies the normal vertical migration pattern of Bythotrephes, such that the latter stays higher in the water column during the day and thus migrates less extremely at night. 2. The vertical distribution of Bythotrephes during the day was determined from single visits to six lakes in Ontario, Canada, all of which contain warm‐water, epilimnetic planktivores but differing in whether they contain cisco. One lake of each fish type was sampled day and night every 2–3 weeks over the ice‐free season to examine daytime depths and migration amplitude. 3. The vertical migration of Bythotrephes differed in the presence and absence of cisco. In the lakes with cisco, there were significantly fewer Bythotrephes in the hypolimnion and they were higher in the water column during the day. Migration amplitude was smaller in the cisco than in the non‐cisco lake. These observations were not attributable to differences in physical factors, and, although not conclusively attributable to cisco, are consistent with an effect of cisco. 4. We suggest that diurnal depth selection by Bythotrephes in lakes containing cisco is a trade‐off between the risk of predation by warm‐ versus cold‐water predators, balanced by the benefits of increased temperature and feeding rates near the surface. Even in lakes without cisco, however, the vertical migration of Bythotrephes was less than expected, suggesting that diurnal depth selection is a balance between the risk from warm‐water planktivores and access to sufficient light to feed effectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号