首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
There is compelling evidence for positive effects of plant diversity on the functioning of forests and agroecosystems. This information is increasingly used to optimize production systems that provide a wide range of ecosystem services. While agroforestry is actively promoted for the sustainable intensification of agriculture and restoration of degraded landscapes, there is a paucity of knowledge on Biodiversity Ecosystem Functioning (BEF) relationships in agroforestry systems. Since BEF-relationships in agroforestry might be shaped by combinations of different life-forms (e.g. trees, shrubs, herbs) and their interactions, experiences from grassland and forest experiments cannot be readily transferred to agroforestry. This highlights the need for a new type of experiments in agroforestry to advance our understanding of the role of biodiversity for the functioning of these systems. Therefore, our aim was to develop a conceptual framework for analysing BEF-relationships in agroforestry systems and to present an exemplary design for this purpose, which we placed in a (sub)tropical context. Based on designs used in tree diversity experiments, we suggest four major design principles: 1) a trait-based approach for selecting tree and crop species, 2) the integration of trees and crops along a gradient of functional diversity, 3) maintaining constant density across different combinations of life-forms in agroforests through the concept of “growing-patch-density”, and 4) disentangling a priori the effects of species diversity on ecosystem functioning from those of structural and functional diversity, defined here as the variation in structural attributes such as plant dimensions and in plant functional traits, respectively. Our conceptual design and the embedded principles offer a promising avenue to identify important drivers of specific BEF-relationships and to quantify management influences on these. This design can support new research projects that aim at improving ecosystem functioning of agroforestry with the view of optimizing the provision of ecosystem services and facilitation of ecosystem restoration.  相似文献   

2.
In the current scenario of rapid conversion of tropical forests into human-dominated activities landscape, the present study was undertaken to understand the role of existing agroforestry systems in conservation of avian species. Three types of agroforestry systems namely tea gardens, homegardens and agrisilviculture were selected in the Brahmaputra North Bank Landscape of Assam, northeast India for the study. A total of 468 point counts revealed 164 bird species belonging to 51 families and 18 orders across all the three different types of agroforestry systems. Tea gardens showed significantly higher bird species richness followed by homegardens and agrisilviculture systems. As per IUCN, four species were categorized as Near Threatened and one species was categorized as Vulnerable. Out of 164 species recorded, 68.3% species were residents, 30.5% species were winter visitors and remaining were summer visitors (1.2%). Majority of the species (45.7%) were common to all the three types of selected agroforestry systems. The feeding guilds revealed that most of the species were insectivorous (50.0%) in habit. A total of 167 tree species belonging to 54 families and 24 orders was recorded across all the three different types of agroforestry systems. The highest tree species richness was recorded in the homegardens (160), followed by agrisilviculture systems (19) and least in tea gardens (11). No statistically significant correlation was found among bird species richness and patch size, tree species richness and number of bird species individuals. The selected agroforestry systems have provided shelter, nesting space, feeding and foraging grounds for birds during the winter season. This data can be useful for the policy makers, tea garden managers, homegarden owners for framing conservation policies of avian species in an era of natural wildlife habitat loss and degradation.  相似文献   

3.
Tree species in agroforestry ecosystems contribute to the livelihoods of rural communities and play an important role in the conservation of biodiversity. Unless agroforestry landscapes are productive, however, farmers will not maintain or enhance the range and quality of tree species in them, and both income opportunities and biodiversity will be lost. Productivity depends on both tree species diversity and genetic (intra-specific) variation, but research on the latter has until recently not received the recognition it deserves. Worse, when knowledge on tree genetic variation in agroforestry systems has become available, it has not generally been linked in any systematic way with management, indicating a disjunction between research and field-level practice. In this essay, we attempt to bridge this gap by considering three questions: why is genetic diversity important in tree species? What is our current state of knowledge about intra-specific variation in trees in agroforestry systems? And, finally, what practical interventions are possible to support the conservation of this diversity in agricultural landscapes, while enhancing farmers’ livelihoods? A wide genetic base in agroforestry trees is essential to prevent inbreeding depression and allow adaptation to changing environmental conditions and to altering markets for tree products. Recent evidence shows, however, that many species are subject to poor germplasm collection practice, occur at low densities in farmland, and are found in highly aggregated distributions, all of which observations raise concerns about productivity and sustainability. A range of germplasm-access based interventions is necessary to improve current management, including the enhancement of community seed- and seedling-exchange networks, and the development of locally based tree domestication activities. Equally necessary, but more difficult to address, is the development of markets that support genetic diversity in tropical tree species; we discuss approaches by which this may be undertaken.  相似文献   

4.
In Brazil, cacao is mostly planted beneath shade trees. The diversity of shade trees varies from monospecific to highly diverse canopies, characteristic of pristine Atlantic Forest. This study evaluates the relationships between family richness of Hymenoptera-Parasitica and Chrysidoidea, and tree species richness and density, the species richness of herbaceous understorey, and the area and age of the cacao agroforestry system. We sampled 16 cacao agroforestry systems, with canopy diversity ranging from one to 22 tree species per hectare, in three seasons: summer (March), winter (August) and spring (November). Parasitoids were sampled using eight Malaise-Townes traps per site. Tree species richness and density were enumerated within 1 ha at each site, and herbaceous plant species richness was calculated in eight 1 m2 plots, within the hectare. The number of parasitoid families increased with tree species richness and density in spring and summer, but decreased in winter. Neither species richness of herbaceous plants nor area and age of the system affected parasitoid family richness. We suggest that the increase of parasitoid diversity with tree species richness and density in warmer seasons reflects increasing heterogeneity and availability of resources. The decrease in parasitoid family number with tree density in winter may be due to local impoverishment of resources, leading to parasitoid emigration to neighbouring forest remnants. This result implies that a higher diversity of shade trees will help to maintain high parasitoid levels and, in consequence, higher levels of natural enemies of cacao pests, particularly in the warmer seasons. This prediction is borne out in the experience of cacao producers. The proper management of shade tree diversity will play a vital role in maintaining the sustainability of cacao agroforestry production systems in the tropics and, concurrently, will maintain high biodiversity values in these locations.  相似文献   

5.
Maintaining agricultural diversity is important for the conservation of rare species and for preserving underlying ecosystem processes on which smallholder farmers rely. The positive effects of crop diversity are well documented in tropical systems, but the conservation potential of arid agricultural systems is less clear. This study assesses the impact of three arid agroforestry systems on plant diversity and functional richness in South Sinai, Egypt: (1) mountain orchard gardens, (2) modern town gardens and (3) low desert date-palm gardens. We surveyed plants (cultivated and wild) within gardens and control plots of natural habitat and allocated each plant eight biological traits that are recognised as being linked with major ecosystem processes. Species diversity was quantified using three measures (Hill's numbers) and total species diversity was significantly higher within gardens than in the surrounding habitat at all three levels of diversity and across the three agroforestry systems. Species similarity was high between gardens and the surrounding habitat, and there was a strong overlap in the functional traits of wild plants and cultivated non-tree species. Despite the clear presence of trees within the gardens, the community weighted trait means (CWMs) showed that chamaephyte perennials were the dominant life-forms in both the gardens and the natural habitat. Functional richness differed between the three agroforestry systems, but was significantly higher within the gardens. Functional richness has been linked to increased productivity and CWMs showed that plants within the gardens were considerably taller than outside, suggesting higher biomass accumulation. These findings suggest that Bedouin agricultural practices are not having a negative effect on the flora of the region and that the continuation of these indigenous farming practices can actively benefit rare wild plants in the region. On a wider scale, this study supports the view that smallholder farms and homegardens can be valuable tools in conservation, preserving local species and maintaining ecosystem functioning.  相似文献   

6.
The Kingdom of Nepal extends 800 km east to west along the southern slopes of the Himalayas. Because of its biogeographical position, Nepal contains biological elements of both the Indo-Malayan and Palaearctic realms. Beside the trees in forest ecosystems, a large number of tree species are maintained on farms as part of subsistence farming systems. The role of these trees in ensuring the sustainability of agricultural production and the importance of traditional farming systems for the conservation of crop diversity have been well documented. However, the status of farm trees and their role in biodiversity conservation are poorly documented. This paper presents a case study of two villages in the western middle hills of Nepal. It highlights the role of traditional agroforestry practices for the conservation of tree diversity and argues that farms can be considered biodiversity reservoirs. Farm trees help to reduce pressure on community and government forests and create a favorable environment for many plant and animal species. Farm trees also provide social functions in that households with many farm trees no longer exercise their communal rights to extract grass products from community forests, which in turn benefits poor and disadvantaged households. The paper discusses possibilities to improve the role of farm trees in biodiversity conservation. It argues for the development of mechanisms such as tax exemptions and conservation credits that provide benefits to rural communities as compensation for their local and global environmental services including biodiversity conservation.  相似文献   

7.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

8.
In the current deforestation context, agroforestry is increasingly considered in the tropical zone for its potential contribution to biodiversity conservation. In Guinée Forestière (Guinea, West Africa), coffee-based species rich agroforests are currently expanding on agricultural land around most villages. To assess the role these agroforests play with respect to biodiversity conservation, we compared their tree structure and diversity with those of a neighbouring natural forest. Eighty plots were sampled using a variable area transect method (60 plots distributed into 3 village agroforests, 20 natural forest plots). The structure of coffee-based agroforests showed obvious signs of farmers’ management: density of mature trees was significantly lower than in natural forest and most juvenile trees were eliminated and replaced by coffee trees. However, tree seedling density was not significantly different than in natural forest. Tree species richness and diversity were also lower than in natural forest but much higher than in any other agricultural or agroforestry land use system. These results are close to those obtained in the coffee-based agroforests of Central America, confirming that coffee-based agroforests retain many forest species that play a key role in the conservation of regional forest tree diversity.  相似文献   

9.
Forecasting the impacts of climate change on species distribution has several implications for conservation. Plinia edulis is a rare and threatened tree species from Brazilian Atlantic Rainforest. In this study, we assessed the impact of global climate change on the distribution of P. edulis. Additionally, we evaluated the efficacy of the Brazilian protected network to conserve this species. Ecological niche models were built using the maximum entropy method based on occurrence records and environmental predictors. Models predicted a reduction of climatically suitable areas for P. edulis in all evaluated scenarios in the coming years. Furthermore, we observed that Brazilian protected areas (PAs) are ineffective to conserve this species. Given the fact that P. edulis is a promising tree species rarely found within Brazilian PAs and threatened by global climate change, we strongly recommend the cultivation of this multipurpose species in agroforestry systems, landscaping and homegardens in order to promote its conservation through sustainable use.  相似文献   

10.
Frugivores and pollinators are two functional groups of animals that help ensure gene flow of plants among sites in landscapes under restoration and to accelerate restoration processes. Resource availability is postulated to be a key factor to structure animal communities using restoration sites, but it remains poorly studied. We expected that diverse forests with many plant growth forms that have less‐seasonal phenological patterns will provide more resources for animals than forests with fewer plant growth forms and strongly seasonal phenological patterns. We studied forests where original plantings included high tree species diversity. We studied resource provision (richness and abundance of flowers and fruits) of all plant growth forms, in three restoration sites of different ages compared to a reference forest, investigating whether plant phenology changes with restoration process. We recorded phenological data for reproductive plant individuals (351 species) with monthly sampling over 2 years, and found that flower and fruit production have been recovered after one decade of restoration, indicating resource provision for fauna. Our data suggest that a wide range of plant growth forms provides resource complementarities to those of planted tree species. Different flower phenologies between trees and non‐trees seem to be more evident in a forest with high non‐tree species diversity. We recommend examples of ideal species for planting, both at the time of initial planting and post‐planting during enrichment. These management actions can minimize shortage and periods of resource scarcity for frugivorous and nectarivorous fauna, increasing probability of restoring ecological processes and sustainability in restoration sites.  相似文献   

11.
Natural flora, vegetation, diversity and structure of 62 traditional coffee–banana plantations on Kilimanjaro were investigated and compared with the other vegetation formations on this volcano on basis of over 1400 plots following the method of Braun-Blanquet. The vegetation of the so-called Chagga homegardens belongs floristically to the formation of ruderal vegetation forming two main communities that are determined by altitude. These coffee–banana plantations maintain a high biodiversity with about 520 vascular plant species including over 400 non-cultivated plants. Most species (194) occurring in the Chagga homegardens are forest species, followed by 128 ruderal species, including 41 neophytes. Typical of the agroforestry system of the Chagga homegardens is their multilayered vegetation structure similar to a tropical montane forest with trees, shrubs, lianas, epiphytes and herbs. Beside relicts of the former forest cover, which lost most of their former habitats, there are on the other hand (apophytic) forest species, which were directly or indirectly favoured by the land use of the Chagga people. High demand of wood, the introduction of coffee varieties that are sun-tolerant and low coffee prizes on the world marked endanger this effective and sustainable system.  相似文献   

12.
Allelopathic Interactions in Agroforestry Systems   总被引:1,自引:0,他引:1  
Agroforestry is a modern tool to develop sustainable land use and to increase food production by growing woody species (trees, shrubs, palms, bamboos, etc.) with agricultural crops and/or animals in some form of spatial arrangement or temporal sequence. Because these species co-exist with the agricultural crops, their allelopathic compatibility may be crucial to determine the success of an agroforestry system. A survey of the available information reveals that most of the agroforestry species (AF species) have negative allelopathic effects on food and fodder crops. Therefore, it is desirable to do further research in this direction so that AF species with no or positive allelopathic effects on the companion crops may be promoted for agroforestry programs. As AF species remain a part of the agroecosystem for a longer period, and most of them produce a large amount of leaves and litter, their allelochemicals may play an important role in developing an eco-friendly pest management strategy. Besides these generally studied aspects of allelopathy, some comparatively newer aspects of research have been identified, such as evaluation of qualitative yield of agroforestry systems, selective behavior of the allelochemicals, effect on soil quality, and the role of tree allelochemicals in animal and human nutrition. If given due consideration, allelopathy could play a pivotal role in conservation of the highly threatened environment, biodiversity, natural resource base, and making agriculture more sustainable through broadening the scope of agroforestry.  相似文献   

13.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

14.
The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into the effects of structural diversity. Strict forest reserves, left for spontaneous development, offer unique opportunities for studying the effects of diversity in tree species and stand structure. We used data from repeated inventories in ten forest reserves in the Netherlands and northern Belgium to study the growth of pine and oak. We investigated whether the diversity of a tree's local neighbourhood (i.e., species and structural diversity) is important in explaining its basal area growth. For the subcanopy oak trees, we found a negative effect of the tree species richness of the local neighbours, which – in the studied forests – was closely related to the share of shade-casting tree species in the neighbourhood. The growth of the taller oak trees was positively affected by the height diversity of the neighbour trees. Pine tree growth showed no relation with neighbourhood diversity. Tree growth decreased with neighbourhood density for both species (although no significant relationship was found for the small pines). We found no overall diversity-growth relationship in the studied uneven-aged mature forests; the relationship depended on tree species identity and the aspect of diversity considered (species vs. structural diversity).  相似文献   

15.
Gendered Homegardens: A Study in Three Mountain Areas of the Iberian Peninsula. As an example of the importance of gender relations in the use of natural resources, several authors have analyzed the role of women in homegardens. Gendered differences in homegarden management have been difficult to disentangle due to the often–shared nature of gardening. Here, we use an innovative approach to analyze gendered differences in the characteristics and management of homegardens. Specifically, we use information on the prevalence of different household members in gardening activities to classify homegardens as women’s, men’s, or shared. Then, we compare several garden characteristics across the three types of homegardens. For the case study, we use data from homegardens in three rural areas of the Iberian Peninsula. We found that household members generally share homegarden responsibilities in these three regions and that many homegarden characteristics vary with the distribution of gardening tasks. Specifically, we discovered that gardens managed mainly by men were larger, more distant from the dwelling, and better exposed than gardens managed by women. Men and women also used different management techniques; organic fertilizers and traditional pest control management systems predominated in gardens managed by women. Men and women also differed in how they reportedly use garden products, with women favoring household consumption versus sale or gifting. Last, gardens managed mainly by women had a larger diversity of uses for species and a larger diversity of species per unit area. Cultural norms of what is considered appropriate behavior for men and women help explain differences in garden characteristics and their plant composition and structure.  相似文献   

16.
The role of agroforest systems in pathogen regulation through structural characteristics such as shade and tree diversity is recognized. However, few studies have examined the importance of these factors on the spread of diseases of associated fruit trees in agroforestry systems, especially cocoa-based agroforestry systems (CBAS). The aim of this study was to evaluate the effect of associated tree diversity and shade rate into CBAS on citrus Phytophthora foot rot disease (PFRD) intensity. The study was carried out in five citrus production basins of Cameroon, contrasted by ecology and rainfall regimes. A set of 33 CBAS plots was mapped and their species composition and vertical structure were determined. Field data were used to reconstruct CBAS in 3D with Shademotion 5.1.47 software. Using static simulations with shadow overlays, shade rate received by each citrus tree was calculated. Subsequently, citrus trees were grouped into three categories according to the shade rate they received: (i) full sun, with shade rate <30%; (ii) light shade with shade rate 30–70% and, (iii) dense shade, with shade rate >70%. PFRD intensity was determined by measuring the canker extent relatively to the citrus crown circumference. A significant difference in PFRD intensity was observed between the different shade rates. Citrus trees receiving no shade were significantly more attacked by PFRD than those receiving little shade or dense shade. The antagonistic effect of shade was demonstrated. At the expense of factors related to the specific composition of the CBAS, shade, temperature, relative humidity and rainfall were found to be the main factors explaining PFRD intensity in CBAS. This study shows that microclimatic alterations due to the biodiversity in tropical agroforestry systems contribute to sustainable pest management.  相似文献   

17.
Tropical landscapes are dominated by agroecosystems, but the potential value of agroecosystems for the survival of species is often overlooked. In agroecosystems, species conservation is especially important when functional groups such as predators are affected. In Central Sulawesi, we sampled arthropods on cocoa in a gradient of land-use intensity from extensively used forest gardens to intensively used agroforestry systems. The abundance and diversity of all arthropods did not correlate with land-use intensity, so human impact was not followed by high species losses. However, the number of species and abundance of the phytophagous arthropods increased and that of the entomophagous arthropods decreased with land-use intensity. The reduced predator–prey ratio in intensified systems can be related to their reduced species richness of shade trees and the changed microclimate (increased temperature, decreased humidity and canopy cover). In conclusion, transformation of traditional into intensified agroforestry systems had a great impact on arthropod community structure on cocoa. Since predator–prey ratios decreased with increasing land-use intensity, local farmers should have least pest problems in the traditionally diversified agroforestry systems.  相似文献   

18.
Neotropical savannas (‘cerrados’) of Central Brazil are characterized by the coexistence of a large diversity of tree species with divergent phenological behaviors, which reflect a great diversity in growth strategies. In the present study time behavior and quantitative aspects of shoot growth, shoot mortality, and leaf longevity and production were analyzed in 12 woody species of contrasting leaf phenology, adopting a functional group approach where 12 species were categorized into three functional groups: evergreen, decidous and brevideciduous, according to their leaf phenology. Shoot growth and leaf production were seasonal for the three functional groups, differing in their time of occurrence, but being concentrated during the last months of the dry season. Shoot growth differed between evergreens and deciduous, as well leaf production. Evergreens had higher rates of shoot growth, produced a higher number of leaves and had longer leaf longevity (around 500 days against 300 days in deciduous and brevideciduous). Leaf longevity was associated with patterns of leaf production when accounting for all phenological groups studied. It was possible to identify different patterns of aerial growth in savanna phenological groups, providing evidence of great functional variability amongst the groups studied.  相似文献   

19.
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号