首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.  相似文献   

2.
Tertiary interactions are critical for proper RNA folding and ribozyme catalysis. RNA tertiary structure is often condensed through long-range helical packing interactions mediated by loop-receptor motifs. RNA structures displaying helical packing by loop-receptor interactions have been solved by X-ray crystallography, but not by NMR. Here, we report the NMR structure of a 30 kDa GAAA tetraloop-receptor RNA complex. In order to stabilize the complex, we used a modular design in which the RNA was engineered to form a homodimer, with each subunit containing a GAAA tetraloop phased one helical turn apart from its cognate 11-nucleotide receptor domain. The structure determination utilized specific isotopic labeling patterns (2H, 13C and 15N) and refinement against residual dipolar couplings. We observe a unique and highly unusual chemical shift pattern for an adenosine platform interaction that reveals a spectroscopic fingerprint for this motif. The structure of the GAAA tetraloop-receptor interaction is well defined solely from experimental NMR data, shows minor deviations from previously solved crystal structures, and verifies the previously inferred hydrogen bonding patterns within this motif. This work demonstrates the feasibility of using engineered homodimers as modular systems for the determination of RNA tertiary interactions by NMR.  相似文献   

3.
The Mg(2+)-dependent GAAA tetraloop interaction with its 11 nucleotide receptor is one of the most frequently occurring long-range tertiary interactions in RNAs. To explore conformational changes in the receptor during tetraloop docking, nitroxide spin labels were attached at each of four uridine bases, one at a time, within an RNA molecule containing the receptor sequence. In the presence of Mg2+ and the tetraloop, the electron paramagnetic resonance (EPR) spectrum of one of the labeled bases reflected a large increase in mobility, indicating unstacking of the base upon tetraloop docking. This provides direct evidence that base unstacking is an intrinsic feature of the solution tetraloop-receptor complex formed in the presence of Mg2+. Additional evidence suggests that in solution the bound receptor conformation is similar to that observed in the crystal structure of a group I intron ribozyme domain. In Mg2+ alone, a receptor conformation with an unstacked base was not detectable, suggesting that this conformation is of higher standard state free energy than that of the free receptor. This leads to the conclusion that the extensive RNA-RNA interactions observed in the crystal structure of the tetraloop-receptor complex provide larger interaction energy than the measured apparent affinity between the tetraloop and the free receptor. This is compatible with a high specificity of the tetraloop-receptor interaction.  相似文献   

4.
Young BT  Silverman SK 《Biochemistry》2002,41(41):12271-12276
Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once folded, have not been reported. Here we investigate the role of the key GAAA tetraloop-receptor motif in folding of the P4-P6 domain of the Tetrahymena group I intron RNA. Insertions of one or more nucleotides into the tetraloop significantly disrupt the thermodynamics of tertiary folding; single-nucleotide insertions shift the folding free energy by 2-4 kcal/mol (DeltaDeltaG(o)'). The folding kinetics of several modified P4-P6 domains were determined by stopped-flow fluorescence spectroscopy, using an internally incorporated pyrene residue as the chromophore. In contrast to the thermodynamic results, the kinetics of Mg(2+)-induced folding were barely affected by the tetraloop modifications, with a DeltaDeltaG(++) of 0.2-0.4 kcal/mol and a Phi value (ratio of the kinetic and thermodynamic contributions) of <0.1. These data indicate an early transition state for folding of P4-P6 with respect to forming the tetraloop-receptor contact, consistent with previous results for modifications elsewhere in P4-P6. We conclude that the GAAA tetraloop-receptor motif contributes little to the stabilization of the transition state for Mg(2+)-induced P4-P6 folding. Rather, the tetraloop-receptor motif acts to clamp the RNA once folding has occurred. This is the first report to correlate the kinetic and thermodynamic contributions of an important RNA tertiary motif, the GNRA tetraloop-receptor. The results are related to possible models for the Mg(2+)-induced folding of the P4-P6 RNA, including a model invoking rapid nonspecific electrostatic collapse.  相似文献   

5.
6.
RNA tertiary interactions involving docking of GNRA (N; any base; R; purine) hairpin loops into helical stem structures on other regions of the same RNA are one of the most common RNA tertiary interactions. In this study, we investigated a tertiary association between a GAAA hairpin tetraloop in a small branching ribozyme (DiGIR1) and a receptor motif (HEG P1 motif) present in a hairpin structure on a separate mRNA molecule. DiGIR1 generates a 2', 5' lariat cap at the 5' end of its downstream homing endonuclease mRNA by catalysing a self-cleavage branching reaction at an internal processing site. Upon release, the 5' end of the mRNA forms a distinct hairpin structure termed HEG P1. Our biochemical data, in concert with molecular 3D modelling, provide experimental support for an intermolecular tetraloop receptor interaction between the L9 GAAA in DiGIR1 and a GNRA tetraloop receptor-like motif (UCUAAG-CAAGA) found within the HEG P1. The biological role of this interaction appears to be linked to the homing endonuclease expression by promoting post-cleavage release of the lariat capped mRNA. These findings add to our understanding of how protein-coding genes embedded in nuclear ribosomal DNA are expressed in eukaryotes and controlled by ribozymes.  相似文献   

7.
The solution structure of a 22 nt RNA hairpin and its complex with Co(NH(3))(6)(3+) bound to the GAAA tetraloop has been determined by NMR spectroscopy. Co(NH(3))(6)(3+) has a similar geometry to Mg(H(2)O)(6)(2+) and can be used as a probe for binding sites of completely solvated magnesium ions. The hairpin contains tandem G.A mismatches, similar to the P5abc region of a group I intron, and is closed by a GAAA tetraloop. The tandem G.A mismatches are imino hydrogen bonded in contrast with the sheared G.A mismatches found in a different context in the crystal structure of the P4-P6 domain. Chemical shift changes of the imino protons upon titration of the RNA hairpin with Mg(2+) and with Co(NH(3))(6)(3+) were used to identify ion-binding sites. Paramagnetic resonance broadening upon titration with Mn(2+) was also used. The titration curves gave dissociation binding constants for the magnesium ions in the millimolar range, similar to the binding in the major groove of RNA at tandem G.U base-pairs. Although the largest chemical shift change occurred at an imino proton of one of the G.A base-pairs, no nuclear Overhauser enhancement cross-peaks between the cobalt ligand and neighboring RNA protons were seen, presumably due to the high mobility of the Co(NH(3))(6)(3+) at this site. Nuclear Overhauser enhancement cross-peaks between Co(NH(3))(6)(3+) and the GAAA tetraloop were observed, which allowed the determination of the structure of the tetraloop binding site. The Co(NH(3))(6)(3+) is bound in the major groove of the GAAA tetraloop with hydrogen bonds to guanine base N7 and to phosphate oxygen atoms of the tetraloop.  相似文献   

8.
Qin PZ  Butcher SE  Feigon J  Hubbell WL 《Biochemistry》2001,40(23):6929-6936
The GNRA (N: any nucleotide; R: purine) tetraloop/receptor interaction is believed to be one of the most frequently occurring tertiary interaction motifs in RNAs, but an isolated tetraloop/receptor complex has not been identified in solution. In the present work, site-directed spin labeling is applied to detect tetraloop/receptor complex formation and estimate the free energy of interaction. For this purpose, the GAAA tetraloop/receptor interaction was chosen as a model system. A method was developed to place nitroxide labels at specific backbone locations in an RNA hairpin containing the GAAA tetraloop. Formation of the tetraloop/receptor complex was monitored through changes in the rotational correlation time of the tetraloop and the attached nitroxide. Results show that a hairpin containing the GAAA tetraloop forms a complex with an RNA containing the 11-nucleotide GAAA tetraloop receptor motif with an apparent Kd that is strongly dependent on Mg2+. At 125 mM MgCl2, Kd = 0.40 +/- 0.05 mM. The corresponding standard free energy of complex formation is -4.6 kcal/mol, representing the energetics of the tetraloop/receptor interaction in the absence of other tertiary constraints. The experimental strategy presented here should have broad utility in quantifying weak interactions that would otherwise be undetectable, for both nucleic acids and nucleic acid-protein complexes.  相似文献   

9.
Though the molecular architecture of many native RNA structures has been characterized, the structures of folding intermediates are poorly defined. Here, we present a nucleotide-level model of a highly structured equilibrium folding intermediate of the specificity domain of the Bacillus subtilis RNase P RNA, obtained using chemical and nuclease mapping, circular dichroism spectroscopy, small-angle X-ray scattering and molecular modeling. The crystal structure indicates that the 154 nucleotide specificity domain is composed of several secondary and tertiary structural modules. The structure of the intermediate contains modules composed of secondary structures and short-range tertiary interactions, implying a sequential order of tertiary structure formation during folding. The intermediate lacks the native core and several long-range interactions among peripheral regions, such as a GAAA tetraloop and its receptor. Folding to the native structure requires the local rearrangement of a T-loop in the core in concert with the formation of the GAAA tetraloop-receptor interaction. The interplay of core and peripheral structure formation rationalizes the high degree of cooperativity observed in the folding transition leading to the native structure.  相似文献   

10.
Role of metal ions in the tetraloop-receptor complex as analyzed by NMR   总被引:1,自引:0,他引:1  
Metal ions are critical for the proper folding of RNA, and the GAAA tetraloop-receptor is necessary for the optimal folding and function of many RNAs. We have used NMR to investigate the role of metal ions in the structure of the tetraloop-receptor in solution. The NMR data indicate native tertiary structure is formed under a wide range of ionic conditions. The lack of conformational adaptation in response to very different ionic conditions argues against a structural role for divalent ions. Nuclear Overhauser effects to cobalt hexammine and paramagnetic relaxation enhancement induced by manganese ions were used to determine the NMR structures of the tetraloop receptor in association with metal ions, providing the first atomic-level view of these interactions in the solution state. Five manganese and two cobalt hexammine ions could be localized to the RNA surface. The locations of the associated metal ions are similar, but not identical to, those of previously determined crystal structures. The sites of association are in general agreement with nonlinear Poisson-Boltzmann calculations of the electrostatic surface, emphasizing the general importance of diffusely associated ions in RNA tertiary structure.  相似文献   

11.
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.  相似文献   

12.
Proper assembly of RNA into catalytically active three-dimensional structures requires multiple tertiary binding interactions, individual characterization of which is crucial to a detailed understanding of global RNA folding. This work focuses on single-molecule fluorescence studies of freely diffusing RNA constructs that isolate the GAAA tetraloop-receptor tertiary interaction. Freely diffusing conformational dynamics are explored as a function of Mg2+ and Na+ concentration, both of which promote facile docking, but with 500-fold different affinities. Systematic shifts in mean fluorescence resonance energy transfer efficiency values and line widths with increasing [Na+] are observed for the undocked species and can be interpreted with a Debye model in terms of electrostatic relaxation and increased flexibility in the RNA. Furthermore, we identify a 34 ± 2% fraction of freely diffusing RNA constructs remaining undocked even at saturating [Mg2+] levels, which agrees quantitatively with the 32 ± 1% fraction previously reported for immobilized constructs. This verifies that the kinetic heterogeneity observed in the docking rates is not the result of surface tethering. Finally, the KD value and Hill coefficient for [Mg2+]-dependent docking decrease significantly for [Na+] = 25 mM vs. 125 mM, indicating Mg2+ and Na+ synergy in the RNA folding process.  相似文献   

13.
Solution structure of a GAAA tetraloop receptor RNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
S E Butcher  T Dieckmann    J Feigon 《The EMBO journal》1997,16(24):7490-7499
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

14.
Tetraloops are a common building block for RNA tertiary structure, and most tetraloops fall into one of three well-characterized classes: GNRA, UNCG, and CUYG. Here, we present the sequence and structure of a fourth highly conserved class of tetraloop that occurs only within the ζ-ζ′ interaction of group IIC introns. This GANC tetraloop was identified, along with an unusual cognate receptor, in the crystal structure of the group IIC intron and through phylogenetic analysis of intron RNA sequence alignments. Unlike conventional tetraloop-receptor interactions, which are stabilized by extensive hydrogen-bonding interactions, the GANC-receptor interaction is limited to a single base stack between the conserved adenosine of the tetraloop and a single purine of the receptor, which consists of a one- to three-nucleotide bulge and does not contain an A-platform. Unlike GNRA tetraloops, the GANC tetraloop forms a sharp angle relative to the adjacent helix, bending by approximately 45° toward the major groove side of the helix. These structural attributes allow GANC tetraloops to fit precisely within the group IIC intron core, thereby demonstrating that structural motifs can adapt to function in a specific niche.  相似文献   

15.
BBR3464, a charged trinuclear platinum compound, is the first representative of a new class of anticancer drugs to enter phase I clinical trials. The structure of BBR3464 is characterized by two [trans-PtCl(NH(3))(2)] units linked by a tetraamine [trans-Pt(NH(3))(2)?H(2)N(CH(2))(6)NH(2)?(2)] unit. The +4 charge of BBR3464 and the separation of the platinating units indicate that the mode of DNA binding will be distinctly different from those of classical mononuclear drugs such as cisplatin, cis-[PtCl(2)(NH(3))(2)]. The reaction of BBR3464 with three different nucleic acid conformations was assessed by gel electrophoresis. Comparison of single-stranded DNA, RNA, and double-stranded DNA indicated that the reaction of BBR3464 with single-stranded DNA and RNA was faster than that with duplex DNA, and produced more drug-DNA and drug-RNA adducts. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to further characterize the binding modes of BBR3464 with the DNA substrates. BBR3464 binding to different nucleic acid conformations raises the possibility that the adducts of single-stranded DNA and RNA may play a role in the different antitumor efficacies of this novel drug as compared with cisplatin.  相似文献   

16.
Chrysanthemum chlorotic mottle viroid (CChMVd) is a small RNA (398-401nt) with hammerhead ribozymes in both polarity strands that mediate self-cleavage of the oligomeric RNA intermediates generated in a rolling-circle mechanism of replication. Within the in vivo branched RNA conformation of CChMVd, a tetraloop has been identified as a major determinant of pathogenicity. Here we present a detailed study of this tetraloop by site-directed mutagenesis, bioassay of the CChMV-cDNA clones and analysis of the resulting progenies. None of the changes introduced in the tetraloop, including its substitution by a triloop or a pentaloop, abolished infectivity. In contrast to observations for other RNAs, the thermodynamically stable GAAA tetraloop characteristic of non-symptomatic CChMVd-NS strains was not functionally interchangeable for other stable tetraloops of the UNCG family, suggesting that the sequence, rather than the structure, is the major factor governing conservation of this motif. In most cases, the changes introduced initially led to symptomless infections, which eventually evolved to be symptomatic concurrently with the prevalence in the progeny of the UUUC tetraloop characteristic of symptomatic CChMVd-S strains. Only in one case did the GAAA tetraloop emerge and eventually dominate the progeny in infected plants that were non-symptomatic. These results revealed two major fitness peaks in the tetraloop (UUUC and GAAA), whose adjacent stem was also under strong selection pressure. Co-inoculations with CChMVd-S and -NS variants showed that only when the latter was in a 100- or 1000-fold excess did the infected plants remain symptomless, confirming the higher biological fitness of the S variant and explaining the lack of symptom expression previously observed in cross-protection experiments.  相似文献   

17.
RNA tetraloops are common secondary structural motifs in many RNAs, especially ribosomal RNAs. There are few studies of small molecule recognition of RNA tetraloops although tetraloops are known to interact with RNA receptors and proteins, and to form nucleation sites for RNA folding. In this paper, we investigate the binding of neomycin, kanamycin, 2,4-diaminoquinazoline, quinacrine, and an aminoacridine derivative (AD1) to a GAAA tetraloop using fluorescence spectroscopy. We have found that AD1 and quinacrine bind to the GAAA tetraloop with the highest affinity of the molecules examined. The equilibrium dissociation constant of the AD1-GAAA tetraloop complex was determined to be 1.6 microM. RNase I and lead acetate footprinting experiments suggested that AD1 binds to the junction between the loop and stem of the GAAA tetraloop.  相似文献   

18.
Most large ribozymes require protein cofactors in order to function efficiently. The yeast mitochondrial bI3 group I intron requires two proteins for efficient splicing, Mrs1 and the bI3 maturase. Mrs1 has evolved from DNA junction resolvases to function as an RNA cofactor for at least two group I introns; however, the RNA binding site and the mechanism by which Mrs1 facilitates splicing were unknown. Here we use high-throughput RNA structure analysis to show that Mrs1 binds a ubiquitous RNA tertiary structure motif, the GNRA tetraloop-receptor interaction, at two sites in the bI3 RNA. Mrs1 also interacts at similar tetraloop-receptor elements, as well as other structures, in the self-folding Azoarcus group I intron and in the RNase P enzyme. Thus, Mrs1 recognizes general features found in the tetraloop-receptor motif. Identification of the two Mrs1 binding sites now makes it possible to create a model of the complete six-component bI3 ribonucleoprotein. All protein cofactors bind at the periphery of the RNA such that every long-range RNA tertiary interaction is stabilized by protein binding, involving either Mrs1 or the bI3 maturase. This work emphasizes the strong evolutionary pressure to bolster RNA tertiary structure with RNA-binding interactions as seen in the ribosome, spliceosome, and other large RNA machines.  相似文献   

19.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

20.
Qin H  Sosnick TR  Pan T 《Biochemistry》2001,40(37):11202-11210
The structure of the specificity domain (S-domain) of the Bacillus subtilis RNase P RNA has been proposed to be composed of a core and a buttress module, analogous to the bipartite structure of the P4-P6 domain of the Tetrahymena group I ribozyme. The core module is the functional unit of the S-domain and contains the binding site for the T stem-loop of a tRNA. The buttress module provides structural stability to the core module and consists of a GA3 tetraloop and its receptor. To explicitly test the hypothesis that modular construction can describe the structure of the S-domain and is a useful RNA design strategy, we analyzed the equilibrium folding and substrate binding of three classes of S-domain mutants. Addition or deletion of a base pair in the helical linker region between the modules only modestly destabilizes the tertiary structure. tRNA binding selectivity is affected in one but not in two other mutants of this class. Elimination of the GA3 tetraloop-receptor interactions significantly destabilizes the core module and results in the loss of tRNA binding selectivity. Replacing the buttress module with that of a homologous RNase P RNA maintains the tRNA binding selectivity. Overall, we have observed that the linker regions between the two modules can tolerate moderate structural changes and that the buttress modules can be shuffled between homologous S-domains. These results suggest that it is feasible to design an RNA using a buttress module to stabilize a functional module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号