首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

CD44, a transmembrane glycoprotein, is a major receptor for extracellular proteins involved in invasion and metastasis of human cancers. We have previously demonstrated that the novel Gemini vitamin D analog BXL0124 [1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluro-cholecalciferol] repressed CD44 expression in MCF10DCIS.com basal-like human breast cancer cells and inhibited MCF10DCIS xenograft tumor growth. In the present study, we investigated potential factors downstream of CD44 and the biological role of CD44 repression by BXL0124 in MCF10DCIS cells.

Methods and Findings

The treatment with Gemini vitamin D BXL0124 decreased CD44 protein level, suppressed STAT3 signaling, and inhibited invasion and proliferation of MCF10DCIS cells. The interaction between CD44 and STAT3 was determined by co-immunoprecipitation. CD44 forms a complex with STAT3 and Janus kinase 2 (JAK2) to activate STAT3 signaling, which was inhibited by BXL0124 in MCF10DCIS cells. The role of CD44 in STAT3 signaling and invasion of MCF10DCIS cells was further determined by the knockdown of CD44 using small hairpin RNA in vitro and in vivo. MCF10DCIS cell invasion was markedly decreased by the knockdown of CD44 in vitro. The knockdown of CD44 also significantly decreased mRNA expression levels of invasion markers, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), in MCF10DCIS cells. In MCF10DCIS xenograft tumors, CD44 knockdown decreased tumor size and weight as well as invasion markers.

Conclusions

The present study identifies STAT3 as an important signaling molecule interacting with CD44 and demonstrates the essential role of CD44-STAT3 signaling in breast cancer invasion. It also suggests that repression of CD44-STAT3 signaling is a key molecular mechanism in the inhibition of breast cancer invasion by the Gemini vitamin D analog BXL0124.  相似文献   

3.

Background

Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn.

Methodology/Principal Findings

We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins.

Conclusions/Significance

Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.  相似文献   

4.

Background

Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles.

Methodology/Principal Findings

Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231.

Conclusions/Significance

Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.  相似文献   

5.

Background

The sestrin family of stress-responsive genes (SESN1-3) are suggested to be involved in regulation of metabolism and aging through modulation of the AMPK-mTOR pathway. AMP-activated protein kinase (AMPK) is an effector of the tumour suppressor LKB1, which regulates energy homeostasis, cell polarity, and the cell cycle. SESN1/2 can interact directly with AMPK in response to stress to maintain genomic integrity and suppress tumorigenesis. Ionizing radiation (IR), a widely used cancer therapy, is known to increase sestrin expression, and acutely activate AMPK. However, the regulation of AMPK expression by sestrins in response to IR has not been studied in depth.

Methods and Findings

Through immunoprecipitation we observed that SESN2 directly interacted with the AMPKα1β1γ1 trimer and its upstream regulator LKB1 in MCF7 breast cancer cells. SESN2 overexpression was achieved using a Flag-tagged SESN2 expression vector or a stably-integrated tetracycline-inducible system, which also increased AMPKα1 and AMPKβ1 subunit phosphorylation, and co-localized with phosphorylated AMPKα-Thr127 in the cytoplasm. Furthermore, enhanced SESN2 expression increased protein levels of LKB1 and AMPKα1β1γ1, as well as mRNA levels of LKB1, AMPKα1, and AMPKβ1. Treatment of MCF7 cells with IR elevated AMPK expression and activity, but this effect was attenuated in the presence of SESN2 siRNA. In addition, elevated SESN2 inhibited IR-induced mTOR signalling and sensitized MCF7 cells to IR through an AMPK-dependent mechanism.

Conclusions

Our results suggest that in breast cancer cells SESN2 is associated with AMPK, it is involved in regulation of basal and IR-induced expression and activation of this enzyme, and it mediates sensitization of cancer cells to IR.  相似文献   

6.

Background

Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.

Materials and Methods

Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.

Results

Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.

Conclusions

Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.  相似文献   

7.
8.

Background

The major established etiologic risk factor for bladder cancer is cigarette smoking and one of the major antineoplastic agents used for the treatment of advanced bladder cancer is cisplatin. A number of reports have suggested that cancer patients who smoke while receiving treatment have lower rates of response and decreased efficacy of cancer therapies.

Methodology/Principal Findings

In this study, we investigated the effect of cigarette smoke condensate (CSC) vapor on cisplatin toxicity in urothelial cell lines SV-HUC-1 and SCaBER cells. We showed that chronic exposure to CSC vapor induced cisplatin resistance in both cell lines. In addition, we found that the expression of mitochondrial-resident protein adenylate kinase-3 (AK3) is decreased by CSC vapor. We further observed that chronic CSC vapor-exposed cells displayed decreased cellular sensitivity to cisplatin, decreased mitochondrial membrane potential (ΔΨm) and increased basal cellular ROS levels compared to unexposed cells. Re-expression of AK3 in CSC vapor-exposed cells restored cellular sensitivity to cisplatin. Finally, CSC vapor increased the growth of the tumors and also curtail the response of tumor cells to cisplatin chemotherapy in vivo.

Conclusions/Significance

The current study provides evidence that chronic CSC vapor exposure affects AK3 expression and renders the cells resistant to cisplatin.  相似文献   

9.

Background

Breast cancer is the second leading cause of cancer related deaths in women worldwide. Reports about the early diagnosis of breast cancer are suggestive of an improved clinical outcome and overall survival rate in cancer patients. Therefore, cancer screening biomarker for early detection and diagnosis is urgently required for timely treatment and better cancer management. In this context, we investigated an association of cancer testis antigen, A-Kinase anchor protein 4 (AKAP4) with breast carcinoma.

Methodology/Findings

We first compared the AKAP4 gene and protein expression in four breast cancer cells (MCF7, MDA-MB-231, SK-BR3 and BT474) and normal human mammary epithelial cells. In addition, 91 clinical specimens of breast cancer patients of various histotypes including ductal carcinoma in situ, infiltrating ductal carcinoma and infiltrating lobular carcinoma and 83 available matched adjacent non-cancerous tissues were examined for AKAP4 gene and protein expression by employing in situ RNA hybridization and immunohistochemistry respectively. Humoral response against AKAP4 was also investigated in breast cancer patients employing ELISA. Our in vitro studies in all breast cancer cells revealed AKAP4 gene and protein expression whereas, normal human mammary epithelial cells failed to show any expression. Using in situ RNA hybridization and immunohistochemistry, 85% (77/91) tissue specimens irrespective of histotypes, stages and grades of breast cancer clinical specimens revealed AKAP4 gene and protein expression. However, matched adjacent non-cancerous tissues failed to display any AKAP4 gene and protein expression. Furthermore, humoral response was observed in 79% (72/91) of total breast cancer patients. Interestingly, we observed that 94% (72/77) of breast cancer patients found positive for AKAP4 protein expression generated humoral response against AKAP4 protein.

Conclusions

Collectively, our data suggests that AKAP4 may be used as serum based diagnostic test for an early detection and diagnosis of breast cancer and may be a potential target for immunotherapeutic use.  相似文献   

10.

Background

Profilins are actin-modulating proteins regulating many intracellular functions based on their multiple and diverse ligand interactions. They have been implicated to play a role in many pathological conditions such as allergies, cardiovascular diseases, muscular atrophy, diabetes, dementia and cancer. Post-translational modifications of profilin 1 can alter its properties and subsequently its function in a cell. In the present study, we identify the importance of phosphorylation of profilin 1 at serine 137 (S137) residue in breast cancer progression.

Methods/Principal Findings

We found elevated profilin 1 (PFN) in human breast cancer tissues when compared to adjacent normal tissues. Overexpression of wild-type profilin 1 (PFN-WT) in breast cancer MCF7 cells made them more migratory, invasive and adherent independent in comparison to empty vector transfected cells. Mutation in serine phosphorylation site (S137) of profilin 1 (PFN-S137A) significantly abrogated these properties. Mutation affecting actin-binding ability (PFN-R74E) of profilin 1 enhanced its tumorigenic function whereas mutation affecting its poly-L-proline binding function (PFN-H133S) alleviated these mechanisms in breast cancer cells. PFN-WT was found to activate matrix metalloproteinases by zymography, MMP2 and MMP9 in presence of PDBu (phorbol 12, 13 dibutyrate, PI3K agonist) to enhance migration and invasion in MCF7 cells while PFN-S137A did not. Phosphorylation increased migration and invasion in other mutants of profilin 1. Nuclear profilin levels also increased in the presence of PDBu.

Conclusions

Previous studies show that profilin could be executing a dual role in cancer by either suppressing or promoting tumorigenesis in a context dependent manner. In this study we demonstrate for the first time that phosphorylation of profilin 1 at serine 137 enhances oncogenic properties in breast cancer cells. Inhibitors targeting profilin 1 phosphorylation directly or indirectly through inhibition of kinases that phosphorylate profilin could be valuable therapeutic agents that can alter its activity and thereby control the progression of cancer.  相似文献   

11.
12.

Introduction

The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival.

Methods

The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy.

Results

A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012).

Conclusion

Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.  相似文献   

13.
14.
15.

Introduction

Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.

Methods

We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.

Results

Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.

Conclusions

Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.  相似文献   

16.

Background

Breast cancer is a leading cause of death among women worldwide. Increasing evidence implies that human cytomegalovirus (HCMV) infection is associated with several malignancies. We aimed to examine whether HCMV is present in breast cancer and sentinel lymph node (SLN) metastases.

Materials and Methods

Formalin-fixed paraffin-embedded tissue specimens from breast cancer and paired sentinel lymph node (SLN) samples were obtained from patients with (n = 35) and without SLN metastasis (n = 38). HCMV immediate early (IE) and late (LA) proteins were detected using a sensitive immunohistochemistry (IHC) technique and HCMV DNA by real-time PCR.

Results

HCMV IE and LA proteins were abundantly expressed in 100% of breast cancer specimens. In SLN specimens, 94% of samples with metastases (n = 34) were positive for HCMV IE and LA proteins, mostly confined to neoplastic cells while some inflammatory cells were HCMV positive in 60% of lymph nodes without metastases (n = 35). The presence of HCMV DNA was confirmed in 12/12 (100%) of breast cancer and 10/11 (91%) SLN specimens from the metastatic group, but was not detected in 5/5 HCMV-negative, SLN-negative specimens. There was no statistically significant association between HCMV infection grades and progesterone receptor, estrogen receptor alpha and Elston grade status.

Conclusions

The role of HCMV in the pathogenesis of breast cancer is unclear. As HCMV proteins were mainly confined to neoplastic cells in primary breast cancer and SLN samples, our observations raise the question whether HCMV contributes to the tumorigenesis of breast cancer and its metastases.  相似文献   

17.
18.

Introduction

Glucosylceramide synthase (GCS) is one enzyme that provides a major route for ceramide clearance. Recent evidence has indicated an important role for GCS in multidrug resistance (MDR) tumors. Doxorubicin (DOX)can modulate the expression of GCS in leukemia and ovary cell lines. However, few studies have investigated their relationship in breast cancer;

Methods

We collected 84 excision biopsies from patients with invasive ductal breast cancer of whom 33 patients had undergone preoperative chemotherapy. Immunohistochemistry was used to analyze the expression of GCS protein and significantly showed that the expression of GCS was higher in the samples from patients treated with preoperative chemotherapy(p = 0.018). In order to investigate the underlying mechanism, breast cancer cell lines were cultured with different concentrations of DOX, and mRNA and protein levels of GCS were then detected;

Results

DOX significantly upregulated the expression of GCS at both the mRNA and protein level in ERα-positive MCF-7 cells.We then block down the Sp1 site of GCS promoter, which inhibited the DOX-mediated increase in GCS expression; and after Erα was inhibited in MCF-7 cells, the up-regulation of GCS by DOX also been inhibited.

Conclusions

In conclusion, our data demonstrated the novel finding that DOX could modulate the expression of GCS through the Sp1 site of GCS promoter in ERα-positive breast cancer cells.  相似文献   

19.

Background

TGFß overproduction in cancer cells is one of the main characteristics of late tumor progression being implicated in metastasis, tumor growth, angiogenesis and immune response. We investigated the therapeutic efficacy of anti-TGFß peptides in the control of angiogenesis elicited by conditional over-expression of TGFß.

Methods

We have inserted in human MCF7 mammary-cancer cells a mutated TGFß gene in a tetracycline-repressible vector to obtain conditional expression of mature TGFß upon transient transfection, evaluated the signaling pathways involved in TGFß-dependent endothelial cells activation and the efficacy of anti-TGFß peptides in the control of MCF7-TGFß-dependent angiogenesis.

Results

TGFß over-expression induced in MCF7 several markers of the epithelial-to-mesenchymal transition. Conditioned-medium of TGFß-transfected MCF7 stimulated angiogenesis in vivo and in vitro by subsequent activation of SMAD2/3 and SMAD1/5 signaling in endothelial cells, as well as SMAD4 nuclear translocation, resulting in over-expression of the pro-angiogenic growth and differentiation factor-5 (GDF5). Inhibition or silencing of GDF5 in TGFß-stimulated EC resulted in impairment of GDF5 expression and of TGFß-dependent urokinase-plasminogen activator receptor (uPAR) overproduction, leading to angiogenesis impairment. Two different TGFß antagonist peptides inhibited all the angiogenesis-related properties elicited in EC by exogenous and conditionally-expressed TGFß in vivo and in vitro, including SMAD1/5 phosphorylation, SMAD4 nuclear translocation, GDF5 and uPAR overexpression. Antagonist peptides and anti-GDF5 antibodies efficiently inhibited in vitro and in vivo angiogenesis.

Conclusions

TGFß produced by breast cancer cells induces in endothelial cells expression of GDF5, which in turn stimulates angiogenesis both in vitro and in vivo. Angiogenesis activation is rapid and the involved mechanism is totally opposed to the old and controversial dogma about the AKL5/ALK1 balance. The GDF-dependent pro-angiogenic effects of TGFß are controlled by anti-TGFß peptides and anti-GDF5 antibodies, providing a basis to develop targeted clinical studies.  相似文献   

20.

Introduction

As cancer cells are affected by many factors in their microenvironment, a major challenge is to isolate the effect of a specific factor on cancer stem cells (CSCs) while keeping other factors unchanged. We have developed a synthetic inert 3D polyethylene glycol diacrylate (PEGDA) gel culture system as a unique tool to study the effect of microenvironmental factors on CSCs response. We have reported that CSCs formed in the inert PEGDA gel by encapsulation of breast cancer cells maintain their stemness within a certain range of gel stiffness. The objective was to investigate the effect of CD44 binding peptide (CD44BP) conjugated to the gel on the maintenance of breast CSCs.

Methods

4T1 or MCF7 breast cancer cells were encapsulated in PEGDA gel with CD44BP conjugation. Control groups included dissolved CD44BP and the gel with mutant CD44BP conjugation. Tumorsphere size and density, and expression of CSC markers were determined after 9 days. For in vivo, cell encapsulated gels were inoculated in syngeneic Balb/C mice and tumor formation was determined after 4 weeks. Effect of CD44BP conjugation on breast CSC maintenance was compared with integrin binding RGD peptide (IBP) and fibronectin-derived heparin binding peptide (FHBP).

Results

Conjugation of CD44BP to the gel inhibited breast tumorsphere formation in vitro and in vivo. The ability of the encapsulated cells to form tumorspheres in the peptide-conjugated gels correlated with the expression of CSC markers. Tumorsphere formation in vitro was enhanced by FHBP while it was abolished by IBP.

Conclusion

CD44BP and IBP conjugated to the gel abolished tumorsphere formation by encapsulated 4T1 cells while FHBP enhanced tumorsphere formation compared to cells in the gel without peptide. The PEGDA hydrogel culture system provides a novel tool to investigate the individual effect of factors in the microenvironment on CSC maintenance without interference of other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号