首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hantaviruses: molecular biology, evolution and pathogenesis   总被引:14,自引:0,他引:14  
Hantaviruses are tri-segmented negative sense single stranded RNA viruses that belong to the family Bunyaviridae. In nature, hantaviruses are exclusively maintained in the populations of their specific rodent hosts. In their natural host species, hantaviruses usually develop a persistent infection with prolonged virus shedding in excreta. Humans become infected by inhaling virus contaminated aerosol. Unlike asymptomatic infection in rodents, hantaviruses cause two acute febrile diseases in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The mortality rate varies from 0.1% to 40% depending on the virus involved. Hantaviruses are distributed world wide, with over 150,000 HFRS and HPS cases being registered annually. In this review we summarize current knowledge on hantavirus molecular biology, epidemiology, genetic diversity and co-evolution with rodent hosts. In addition, special attention was given in this review to describing clinical manifestation of HFRS and HPS, and advances in our current understanding of the host immune response, treatment, and prevention.  相似文献   

2.
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response.  相似文献   

3.
Under a variety of circumstances, melanin occurs in the dermal compartment of the skin, being mostly observed in cells that have been termed melanophages, some of which have been identified as dermal dendritic cells. We analysed changes in the expression and secretion pattern of cytokines by dendritic cells after the uptake of melanin from various sources. Dendritic cells were derived from human primary blood monocytes or from the human monocytic cell line THP-1. Melanin uptake increased the secretion of the chemokines MIP-1β (CCL4) and MCP-1 (CCL2). The higher MIP-1β secretion was accompanied by higher MIP-1β gene expression. Elevation of MIP-1β secretion was dependent on the uptake of melanin but could not be induced by the phagocytosis of latex beads, indicating that the phagocytic process itself was not sufficient to increase the secretion of this cytokine. The data thus show that the uptake of melanin changes the cytokine expression and secretion pattern of dendritic-like cells.  相似文献   

4.
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention.  相似文献   

5.
6.
Clinical investigations have revealed that infusion of immunotherapeutic mAbs directed to normal or tumor cells can lead to loss of targeted epitopes, a phenomenon called antigenic modulation. Recently, we reported that rituximab treatment of chronic lymphocytic leukemia patients induced substantial loss of CD20 on B cells found in the circulation after rituximab infusion, when rituximab plasma concentrations were high. Such antigenic modulation can severely compromise therapeutic efficacy, and we postulated that B cells had been stripped (shaved) of the rituximab/CD20 complex by monocytes or macrophages in a reaction mediated by FcgammaR. We developed an in vitro model to replicate this in vivo shaving process, based on reacting rituximab-opsonized CD20(+) cells with acceptor THP-1 monocytes. After 45 min at 37 degrees C, rituximab and CD20 are removed from opsonized cells, and both are demonstrable on acceptor THP-1 cells. The reaction occurs equally well in the presence and absence of normal human serum, and monocytes isolated from peripheral blood also promote shaving of CD20 from rituximab-opsonized cells. Tests with inhibitors and use of F(ab')(2) of rituximab indicate transfer of rituximab/CD20 complexes to THP-1 cells is mediated by FcgammaR. Antigenic modulation described in previous reports may have been mediated by such shaving, and our findings may have profound implications for the use of mAbs in the immunotherapy of cancer.  相似文献   

7.
Macrophages can be both beneficial and detrimental after CNS injury. We previously showed rapid accumulation of macrophages in injured immature brain acutely after ischemia-reperfusion. To determine whether these macrophages are microglia or invading monocytes, we subjected post-natal day 7 (P7) rats to transient 3 h middle cerebral artery (MCA) occlusion and used flow cytometry at 24 and 48 h post-reperfusion to distinguish invading monocytes (CD45high/CD11b+) from microglia (CD45low/medium/CD11b+). Inflammatory cytokines and chemokines were determined in plasma, injured and contralateral tissue 1-24 h post-reperfusion using ELISA-based cytokine multiplex assays. At 24 h, the number of CD45+/CD11b+ cells increased 3-fold in injured compared to uninjured brain tissue and CD45 expression shifted from low to medium with less than 10% of the population expressing CD45high. MCA occlusion induced rapid and transient asynchronous increases in the pro-inflammatory cytokine IL-beta and chemokines cytokine-induced neutrophil chemoattractant protein 1 (CINC-1) and monocyte-chemoattractant protein 1 (MCP-1), first in systemic circulation and then in injured brain. Double immunofluorescence with cell-type specific markers showed that multiple cell types in the injured brain produce MCP-1. Our findings show that despite profound increases in MCP-1 in injured regions, monocyte infiltration is low and the majority of macrophages in acutely injured regions are microglia.  相似文献   

8.
9.
Infiltration of human immunodeficiency virus type 1 (HIV-1)-infected and uninfected monocytes/macrophages in organs and tissues is a general phenomenon observed in progression of acquired immunodeficiency syndrome (AIDS). HIV-1 protein Nef is considered as a progression factor in AIDS, and is released from HIV-1-infected cells. Here, we show that extracellular Nef increases migration of monocytes. This effect is (i) concentration-dependent, (ii) reaches the order of magnitude of that induced by formyl-methyonyl-leucyl-proline (fMLP) or CC chemokine ligand 2 (CCL2)/monocyte chemotactic protein (MCP)-1, (iii) inhibited by anti-Nef monoclonal antibodies as well as by heating, and (iv) depends on a concentration gradient of Nef. Further, Nef does not elicit monocytic THP-1 cells to express chemokines such as CCL2, macrophage inhibitory protein-1alpha (CCL3) and macrophage inhibitory protein-1beta (CCL4). These data suggest that extracellular Nef may contribute to disease progression as well as HIV-1 spreading through affecting migration of monocytes.  相似文献   

10.
11.
In Alzheimer's disease (AD) one finds increased deposition of A beta and also an increased presence of monocytes/macrophages in the vessel wall and activated microglial cells in the brain. AD patients show increased levels of proinflammatory cytokines by activated microglia. Here we used a human monocytic THP-1 cell line as a model for microglia to delineate the cellular signaling mechanism involved in amyloid peptides (A beta(1-40) and A beta(1-42))-induced expression of inflammatory cytokines and chemokines. We observed that A beta peptides at physiological concentrations (125 nM) increased mRNA expression of cytokines (TNF-alpha, and IL-1 beta) and chemokines (monocyte chemoattractant protein-1 (MCP-1), IL-8, and macrophage inflammatory protein-1 beta (MIP-1 beta)). The cellular signaling involved activation of c-Raf, extracellular signal-regulated kinase-1 (ERK-1)/ERK-2, and c-Jun N-terminal kinase, but not p38 mitogen-activated protein kinase. This is further supported by the data showing that A beta causes phosphorylation of ERK-1/ERK-2, which, in turn, activates Elk-1. Furthermore, A beta mediated a time-dependent increase in DNA binding activity of early growth response-1 (Egr-1) and AP-1, but not of NF-kappa B and CREB. Moreover, A beta-induced Egr-1 DNA binding activity was reduced >60% in THP-1 cells transfected with small interfering RNA duplexes for Egr-1 mRNA. We show that A beta-induced expression of TNF-alpha, IL-1 beta, MCP-1, IL-8, and MIP-1 beta was abrogated in Egr-1 small inhibitory RNA-transfected cells. Our results indicate that A beta-induced expression of cytokines (TNF-alpha and IL-1 beta) and chemokines (MCP-1, IL-8, and MIP-1 beta) in THP-1 monocytes involves activation of ERK-1/ERK-2 and downstream activation of Egr-1. The inhibition of Egr-1 by Egr-1 small inhibitory RNA may represent a potential therapeutic target to ameliorate the inflammation and progression of AD.  相似文献   

12.
The Old World hantaviruses, members of the family Bunyaviridae, cause hemorrhagic fever with renal syndrome (HFRS). Transmission to humans occurs via inhalation of aerosols contaminated with the excreta of infected rodents. The viral antigen is detectable in dendritic cells, macrophages, lymphocytes, and, most importantly, microvascular endothelial cells. However, the site and detailed mechanism of entry of HFRS-causing hantaviruses in polarized epithelial cells have not yet been defined. Therefore, this study focused on the entry of the pathogenic hantaviruses Hantaan and Puumala into African green monkey kidney epithelial cells and primary human endothelial cells. The polarized epithelial and endothelial cells were found to be susceptible to hantavirus infection exclusively from the apical surface. Treatment with phosphatidylinositol-specific phospholipase C, which removes glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface, protects cells from infection, indicating that hantaviruses require a GPI-anchored protein as a cofactor for entry. Decay-accelerating factor (DAF)/CD55 is a GPI-anchored protein of the complement regulatory system and serves as a receptor for attachment to the apical cell surface for a number of viruses. Infection was reduced by the pretreatment of hantaviral particles with human recombinant DAF. Moreover, the treatment of permissive cells with DAF-specific antibody blocked infection. These results demonstrate that the Old World hantaviruses Hantaan and Puumala enter polarized target cells from the apical site and that DAF is a critical cofactor for infection.  相似文献   

13.
We demonstrate that soluble CD16 (sCD16; soluble Fc gamma RIII), a natural ligand of CR3, inhibits the infection of monocytes by primary R5 HIV-1 strain opsonized with serum of seronegative individuals. Inhibition of monocyte infection by sCD16 was similar to that observed with anti-CR3 mAbs, indicating that opsonized HIV may use a CR3-dependent pathway for entry in monocytic cells. Cultured human monocytes express both CR3 (CD11b/CD18) and CCR5 receptors. RANTES, the natural ligand of CCR5, inhibited infection of monocytes with unopsonized HIV particles and partially that of monocytes infected with HIV particles opsonized with complement-derived fragments. Although HIV-infected monocytes from homozygous CCR5 Delta 32/Delta 32 (CCR5(-/-)) individuals produce low levels of p24, cells infected with opsonized particles produced higher levels of p24 than cells infected with unopsonized particles. Our results thus suggest that CR3 may represent an alternative coreceptor to CCR5 of opsonized primary R5 virus entry into monocytes/macrophages. We also observed that the concentration of sCD16 is greatly decreased in sera of HIV-infected patients with low lymphocyte CD4(+) counts. Taken together, our findings suggest that sCD16, present in plasma, may play an important role in controlling HIV-1 spread.  相似文献   

14.
Infection and activation of monocytes by Marburg and Ebola viruses   总被引:6,自引:0,他引:6       下载免费PDF全文
In this study we investigated the effects of Marburg virus and Ebola virus (species Zaire and Reston) infections on freshly isolated suspended monocytes in comparison to adherent macrophages under culture conditions. Our data showed that monocytes are permissive for both filoviruses. As is the case in macrophages, infection resulted in the activation of monocytes which was largely independent of virus replication. The activation was triggered similarly by Marburg and Ebola viruses, species Zaire and Reston, as indicated by the release of the proinflammatory cytokines interleukin-1beta (IL-1beta), tumor necrosis factor alpha, and IL-6 as well as the chemokines IL-8 and gro-alpha. Our data suggest that infected monocytes may play an important role in the spread of filoviruses and in the pathogenesis of filoviral hemorrhagic disease.  相似文献   

15.
Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14–CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16– classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16– monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.  相似文献   

16.
The complement system is activated in tuberculous pleural effusion (TPE), with increased levels of the anaphylatoxins stimulating pleural mesothelial cells (PMCs) to secrete chemokines, which recruit nonclassical monocytes to the pleural cavity. The differentiation and recruitment of naive CD4+ T cells are induced by pleural cytokines and PMC-produced chemokines in TPE. However, it is unclear whether anaphylatoxins orchestrate CD4+ T cell response via interactions between PMCs and monocytes in TPE. In this study, CD16+ and CD16- monocytes isolated from TPE patients were cocultured with PMCs pretreated with anaphylatoxins. After removing the PMCs, the conditioned monocytes were cocultured with CD4+ T cells. The levels of the cytokines were measured in PMCs and monocyte subsets treated separately with anaphylatoxins. The costimulatory molecules were assessed in conditioned monocyte subsets. Furthermore, CD4+ T cell response was evaluated in different coculture systems. The results indicated that anaphylatoxins induced PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16 monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1β, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. Collectively, these data indicate that anaphylatoxins play a central role in orchestrating Th17 response mainly via interactions between CD16+ monocytes and PMCs in TPE.  相似文献   

17.
Hantaviruses primarily infect endothelial cells (ECs) and nonlytically cause vascular changes that result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Acute pulmonary edema during HPS may be caused by capillary leakage and failure of lymphatic vessels to clear fluids. Uniquely regulated lymphatic ECs (LECs) control fluid clearance, although roles for lymphatics in hantavirus disease remain undetermined. Here we report that hantaviruses productively infect LECs and that LEC infection by HPS causing Andes virus (ANDV) and HFRS causing Hantaan virus (HTNV) are inhibited by α(v)β(3) integrin antibodies. Although α(v)β(3) integrins regulate permeabilizing responses directed by vascular endothelial growth factor receptor 2 (VEGFR2), we found that only ANDV-infected LECs were hyperpermeabilized by the addition of VEGF-A. However, VEGF-C activation of LEC-specific VEGFR3 receptors blocked ANDV- and VEGF-A-induced LEC permeability. In addition, ~75% of ANDV-infected LECs became viable mononuclear giant cells, >4 times larger than normal, in response to VEGF-A. Giant cells are associated with constitutive mammalian target of rapamycin (mTOR) activation, and we found that both giant LECs and LEC permeability were sensitive to rapamycin, an mTOR inhibitor, and VEGF-C addition. These findings indicate that ANDV uniquely alters VEGFR2-mTOR signaling responses of LECs, resulting in giant cell and LEC permeability responses. This suggests that ANDV infection alters normal LEC and lymphatic vessel functions which may contribute to edematous fluid accumulation during HPS. Moreover, the ability of VEGF-C and rapamycin to normalize LEC responses suggests a potential therapeutic approach for reducing pulmonary edema and the severity of HPS following ANDV infection.  相似文献   

18.
Recombinant Wolbachia heat shock protein 60 (rWmhsp60) induces gene expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in human monocytic cell line THP-1. In addition, it inhibits the phagocytic activity and does not alter the nitric oxide production by differentiated THP-1 macrophages, which corroborates with no significant change in inducible nitric oxide synthase gene expression in rWmhsp60 treated THP-1 monocytes. Further, 24 h stimulation of peripheral blood mononuclear cells from normal individuals by rWmhsp60 reveals that monocytes enter the late apoptotic stage, while lymphocytes do not show apoptosis. Thus these findings suggest that rWmhsp60 may contribute to inflammation mediated monocyte dysfunction in filarial pathogenesis.  相似文献   

19.
20.
The neonatal Fc receptor (FcRn) for IgG, an MHC class I-related molecule, functions to transport IgG across polarized epithelial cells and protect IgG from degradation. However, little is known about whether FcRn is functionally expressed in immune cells. We show here that FcRn mRNA was identifiable in human monocytes, macrophages, and dendritic cells. FcRn heavy chain was detectable as a 45-kDa protein in monocytic U937 and THP-1 cells and in purified human intestinal macrophages, peripheral blood monocytes, and dendritic cells by Western blot analysis. FcRn colocalized in vivo with macrosialin (CD68) and Ncl-Macro, two macrophage markers, in the lamina propria of human small intestine. The heavy chain of FcRn was associated with the beta(2)-microglobulin (beta(2)m) light chain in U937 and THP-1 cells. FcRn bound human IgG at pH 6.0, but not at pH 7.5. This binding could be inhibited by human IgG Fc, but not Fab. FcRn could be detected on the cell surface of activated, but not resting, THP-1 cells. Furthermore, FcRn was uniformly present intracellularly in all blood monocytes and intestinal macrophages. FcRn was detectable on the cell surface of a significant fraction of monocytes at lower levels and on a small subset of tissue macrophages that expressed high levels of FcRn on the cell surface. These data show that FcRn is functionally expressed and its cellular distribution is regulated in monocytes, macrophages, and dendritic cells, suggesting that it may confer novel IgG binding functions upon these cell types relative to typical Fc gamma Rs: Fc gamma RI, Fc gamma RII, and Fc gamma RIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号