首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugal transfer of cloning vectors derived from ColE1.   总被引:1,自引:0,他引:1  
I G Young  M I Poulis 《Gene》1978,4(2):175-179
The transfer properties of five cloning vectors derived from ColE1 were studied. Two of the vectors (pSF2124 and pGM706) behaved like wild type ColE1 in that they could be transferred efficiently in the presence of the conjugative plasmid F. The mobilization of the remaining three vectors (pMB9, PBR313 and pBR322) by F was barely detectable. The transfer defect in pBR313 and pBR322 could be complemented by ColK when R64drd11, but not F, was used as the conjugative plasmid. The transferred plasmids could be recovered unchanged from recipients. Conjugal transfer is a potentially useful technique for screening hybrid plasmids in low-risk cloning experiments involving poorly transformable strains.  相似文献   

2.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

3.
Conjugation-mediated genetic exchange in Legionella pneumophila.   总被引:8,自引:2,他引:6       下载免费PDF全文
Genetic exchange mechanisms, to our knowledge, have not been reported for Legionella pneumophila, and consequently, studies on the genetic organization of L. pneumophila have not appeared in the literature. Here, we describe gene transfer mediated by broad host range conjugative plasmids in Legionella spp. Escherichia coli strains carrying plasmids RP1 and R68.45 (IncP1), S-a (IncW), and R40a (IncC), but not plasmids of incompatibility groups FI, FII, and FV, served as donors in matings with L. pneumophila Knoxville 1 (LPK-1). Transconjugants selected by resistance to kanamycin (RP1, R68.45, and S-a) and carbenicillin (R40a) were observed at frequencies of 6.6 X 10(-3), 4.7 X 10(-3), 2.2 X 10(-4), and 5.4 X 10(-5), respectively. Plasmid transfer was not affected by DNase added to the mating medium. After plasmid transfer, LPK-1 stably maintained RP1, R68.45, and S-a, but not R40a. Plasmid-containing LPK-1 isolates also served as donors in agar plate matings with E. coli W1485-1 and naladixic acid-resistant mutants of LPK-1, Legionella micdadei, and Legionella longbeachii. Recombinational exchange of a chromosomal trait was demonstrated when a thymidine auxotroph of L. pneumophila was repaired by R68.45-mediated chromosomal mobilization of a prototrophic donor strain.  相似文献   

4.
We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
S Harayama  M Rekik 《Gene》1989,78(1):19-27
A simple method to transfer non-conjugative Escherichia coli plasmids to other Gram-negative bacteria and their maintenance is described. This method involves generation of inverse transposition-mediated cointegrates of the non-conjugative E. coli plasmid with a conjugative IncW broad-host-range plasmid, R388, carrying Tn10. Isolation of such cointegrates was readily effected by conjugal transfer from an E. coli donor containing the two plasmids to an E. coli recipient, with selection for transconjugants expressing a marker of the E. coli plasmid. This method is particularly useful when large series of E. coli vector-based clones need to be expressed in other Gram-negative bacteria to be functionally analysed, either by complementation or recombination. Utility of the method is shown by a functional analysis in Pseudomonas putida of pBR322 hybrid plasmids containing catabolic genes of TOL plasmid pWW0.  相似文献   

7.
Studies involving the introduction of cloned homologous genes into Vibrio anguillarum revealed that several plasmids could not be conjugally introduced into V. anguillarum 775(pJM1), but were transmissible to the pJM1-cured derivative H775-3. Recombinant pBR322 plasmids containing V. anguillarum genomic DNA inserts were mobilized from Escherichia coli donors, using pRK2013, into V. anguillarum H775-3 recipients at frequencies of 10(-6) to 10(-5) per recipient. When identical matings were performed with V. anguillarum 775(pJM1) recipients, the infrequent exconjugants recovered carried the pBR322-based plasmid but had lost the large virulence plasmid pJM1. Similar studies were carried out with plasmid RP4 and with recombinant derivatives of the closely related broad-host-range plasmid pRK290. While RP4 was transmissible from E. coli to V. anguillarum H775-3 at frequencies of 6.7 x 10(-2) per recipient, transmission to V. anguillarum 775(pJM1) recipients occurred at frequencies of only 2.5 x 10(-7). When pRK290 contained V. anguillarum DNA inserts, the only exconjugants recovered had lost pJM1, or contained pJM1 and a deletion derivative of the recombinant pRK290 plasmid where all of the DNA insert had been deleted. The use of Dam-, Dcm-, or EcoK- methylation-deficient E. coli donor strains failed to result in appreciable numbers of V. anguillarum 775(pJM1) exconjugants that contained the desired transferred plasmids. Following UV mutagenesis, a derivative of V. anguillarum 775(pJM1) was isolated that would accept conjugally transferred plasmid DNAs at frequencies similar to those observed when using V. anguillarum H775-3 recipients. These data suggest that virulence plasmid pJM1 mediates a restriction system that prevents conjugal transmission of plasmid DNA from E. coli donors into V. anguillarum 775(pJM1). This putative restriction system appears not to be directed towards Dam-, Dcm-, or EcoK-methylated DNA, and appears not to involve a Type II restriction endonuclease.  相似文献   

8.
Physical and genetic analysis of the ColD plasmid.   总被引:6,自引:1,他引:5       下载免费PDF全文
The plasmid ColD-CA23, a high-copy-number plasmid of 5.12 kilobases, encodes colicin D, a protein of approximately 87,000 daltons which inhibits bacterial protein synthesis. Colicin D production is under the control of the Escherichia coli SOS regulatory system and is released to the growth medium via the action of the lysis gene product(s). A detailed map of the ColD plasmid was established for 10 restriction enzymes. Using in vitro insertional omega mutagenesis and in vivo insertional Tn5 mutagenesis, we localized the regions of the plasmid responsible for colicin D activity (cda), for mitomycin C-induced lysis (cdl), and for colicin D immunity (cdi). These genes were all located contiguously on a 2,400-base-pair fragment similar to a large number of other Col plasmids (A, E1, E2, E3, E8, N, and CloDF). The ColD plasmid was mobilizable by conjugative transfer by helper plasmids of the IncFII incompatibility group, but not by plasmids belonging to the groups IncI-alpha or IncP. The location of the mobilization functions was determined by deletion analysis. The plasmid needs a segment of 400 base pairs, which is located between the mob genes and the gene for autolysis, for its replication.  相似文献   

9.
Laboratory strains of Escherichia coli containing plasmid pBR325 (or pBR322) were coincubated with a mobilizer strain of E. coli (containing the conjugative plasmid R100-1) and a recipient strain of bacteria. Bacterial strains isolated from raw wastewater or a plasmid-free E. coli laboratory strain served as recipients. Transfer of the pBR plasmid into the recipient strain occurred during a 25-h coincubation in either L broth or sterilized wastewater; transfer frequencies were several orders of magnitude lower in wastewater. After the coincubation, recipients exhibited both plasmid-encoded phenotypic characteristics and an altered plasmid profile, as shown by agarose gel electrophoresis of purified plasmid DNA.  相似文献   

10.
Laboratory strains of Escherichia coli containing plasmid pBR325 (or pBR322) were coincubated with a mobilizer strain of E. coli (containing the conjugative plasmid R100-1) and a recipient strain of bacteria. Bacterial strains isolated from raw wastewater or a plasmid-free E. coli laboratory strain served as recipients. Transfer of the pBR plasmid into the recipient strain occurred during a 25-h coincubation in either L broth or sterilized wastewater; transfer frequencies were several orders of magnitude lower in wastewater. After the coincubation, recipients exhibited both plasmid-encoded phenotypic characteristics and an altered plasmid profile, as shown by agarose gel electrophoresis of purified plasmid DNA.  相似文献   

11.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPalpha) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPalpha plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 +/- 0.2) x 10(-2) S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPalpha plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPalpha plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained.  相似文献   

12.
Gene transfer is a basic requirement for optimizing bioactive natural substances produced by an increasing number of industrially used microorganisms. We have analyzed quantitatively horizontal gene transfer from Escherichia coli to Actinomycetes. The efficiencies of DNA transfer of four different systems were compared that consist of conjugative and mobilizable plasmids with a broad-host range. Three novel binary vector set-ups were constructed based on: (i) the IncQ group of mobilizable plasmids (RSF1010), (ii) IncQ-like pTF-FC2 and (iii) pSB102 that belongs to a new class of broad-host-range plasmids. The established system based on the IncPalpha group of conjugative plasmids served as the reference. For all plasmids constructed, we confirmed the functional integrity of the selected transfer machineries by intrageneric matings between E. coli strains. We demonstrate that the transfer systems introduced in this study are efficient in mediating gene transfer from E. coli to Actinomycetes and are possible alternatives for gene transfer into Actinomycetes for which the IncPalpha-based transfer system is not applicable. The use of plasmids that integrate into the recipients' chromosomes compared to that of plasmids replicating autonomously is shown to allow the access to a wider range of hosts.  相似文献   

13.
Conjugal transfer from Escherichia coli to Alcaligenes eutrophus of the A. eutrophus genes coding for plasmid-borne resistance to cadmium, cobalt, and zinc (czc genes) was investigated on agar plates and in soil samples. This czc fragment is not expressed in the donor strain, E. coli, but it is expressed in the recipient strain, A. eutrophus. Hence, expression of heavy metal resistance by cells plated on a medium containing heavy metals represents escape of the czc genes. The two plasmids into which this DNA fragment has been cloned previously and which were used in these experiments are the nonconjugative, mobilizable plasmid pDN705 and the nonconjugative, nonmobilizable plasmid pMOL149. In plate matings at 28 to 30 degrees C, the direct mobilization of pDN705 occurred at a frequency of 2.4 x 10(-2) per recipient, and the mobilization of the same plasmid by means of the IncP1 conjugative plasmids RP4 or pULB113 (present either in a third cell [triparental cross] or in the recipient strain itself [retromobilization]) occurred at average frequencies of 8 x 10(-4) and 2 x 10(-5) per recipient, respectively. The czc genes cloned into the Tra- Mob- plasmid pMOL149 were transferred at a frequency of 10(-7) to 10(-8) and only by means of plasmid pULB113. The direct mobilization of pDN705 was further investigated in sandy, sandy-loam, and clay soils. In sterile soils, transfer frequencies at 20 degrees C were highest in the sandy-loam soil (10(-5) per recipient) and were enhanced in all soils by the addition of easily metabolizable nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Conjugal transfer from Escherichia coli to Alcaligenes eutrophus of the A. eutrophus genes coding for plasmid-borne resistance to cadmium, cobalt, and zinc (czc genes) was investigated on agar plates and in soil samples. This czc fragment is not expressed in the donor strain, E. coli, but it is expressed in the recipient strain, A. eutrophus. Hence, expression of heavy metal resistance by cells plated on a medium containing heavy metals represents escape of the czc genes. The two plasmids into which this DNA fragment has been cloned previously and which were used in these experiments are the nonconjugative, mobilizable plasmid pDN705 and the nonconjugative, nonmobilizable plasmid pMOL149. In plate matings at 28 to 30 degrees C, the direct mobilization of pDN705 occurred at a frequency of 2.4 x 10(-2) per recipient, and the mobilization of the same plasmid by means of the IncP1 conjugative plasmids RP4 or pULB113 (present either in a third cell [triparental cross] or in the recipient strain itself [retromobilization]) occurred at average frequencies of 8 x 10(-4) and 2 x 10(-5) per recipient, respectively. The czc genes cloned into the Tra- Mob- plasmid pMOL149 were transferred at a frequency of 10(-7) to 10(-8) and only by means of plasmid pULB113. The direct mobilization of pDN705 was further investigated in sandy, sandy-loam, and clay soils. In sterile soils, transfer frequencies at 20 degrees C were highest in the sandy-loam soil (10(-5) per recipient) and were enhanced in all soils by the addition of easily metabolizable nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.  相似文献   

16.
The mobilization properties of three plasmids were examined after cotransfer from Shigella flexneri to Escherichia coli. The largest plasmid, pCN1, was shown to be a conjugative R factor that could promote its own transfer and allow cotransfer of a 4.1-kilobase plasmid, pCN3; mobilization of the third plasmid, pCN2 (6.3 kilobases), required the presence of both pCN1 and pCN3. Sequences from pCN2 and pCN3 homologous to the bom (basis of mobilization) sites of ColE1 and pBR322 were localized by analysis of site-specific deletion derivatives generated in vivo during the transfer of composite plasmids and were characterized by DNA sequencing.  相似文献   

17.
Bacteroides-Escherichia coli shuttle vectors containing a nonmobilizable pBR322 derivative and either pBFTM10 (pDP1, pCG30) or pB8-51 (pEG920) were mobilized by IncP plasmid R751 or pRK231 (an ampicillin-sensitive derivative of RK2) between E. coli strains and from E. coli to Bacteroides recipients. IncI alpha R64 drd-ll transferred these vectors 1,000 times less efficiently than did the IncP plasmids. pDP1, pCG30, and pEG920 could be mobilized from B. uniformis donors to both E. coli and Bacteroides recipients by a conjugative Bacteroides Tcr (Tcr ERL) element which was originally found in a clinical Bacteroides fragilis strain (B. fragilis ERL). However, the shuttle vector pE5-2, which contains pB8-51 cloned in a restriction site that prevents its mobilization by IncP or IncI alpha plasmids, also was not mobilized at detectable frequencies from Bacteroides donors by the Tcr ERL element. The mobilization frequencies of pCG30, pDP1, and pEG920 by the Tcr ERL element in B. uniformis donors to E. coli recipients was about the same as those to isogenic B. uniformis recipients. Transfer of the shuttle vectors from B. uniformis donors to E. coli occurred at the same frequencies when the matings were done aerobically or anaerobically. Growth of the B. uniformis donors in tetracycline (1 microgram/ml) prior to conjugation increased the mobilization frequencies of the vectors to both E. coli and Bacteroides recipients 50 to 100 times.  相似文献   

18.
Bacterial plasmids propagate through microbial populations via the directed process of conjugative plasmid transfer (CPT). Because conjugative plasmids often encode antibiotic resistance genes and virulence factors, several approaches to inhibit CPT have been described. Bisphosphonates and structurally related compounds (BSRCs) were previously reported to disrupt conjugative transfer of the F (fertility) plasmid in Escherichia coli. We have further investigated the effect of these compounds on the transfer of two additional conjugative plasmids, pCU1 and R100, between E. coli cells. The impact of BSRCs on E. coli survival and plasmid transfer was found to be dependent on the plasmid type, the length of time the E. coli were exposed to the compounds, and the ratio of plasmid donor to plasmid recipient cells. Therefore, these data indicate that BSRCs produce a range of effects on the conjugative transfer of bacterial plasmids in E. coli. Since their impact appears to be plasmid type-dependent, BSRCs are unlikely to be applicable as broad inhibitors of antibiotic resistance propagation.  相似文献   

19.
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.  相似文献   

20.
Stability of pBR322 and pBR327 plasmids was studied. Plasmid-containing Escherichia coli strains were grown in liquid growth medium without selection pressure. Plasmid pBR327 was shown to be more stable in E. coli CSH54 cells than pBR322. Essential heterogenity of individual plasmid-containing clones was recognized by the maintenance stability of plasmid DNA. The indicated clones with high stability failed to be cured from pBR327 plasmid by means of acridine orange. High stability of plasmid maintenance and the failure to cure cells containing this plasmid are suggested to correlate with and to be essentially determined by the cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号