首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several integrated pest management programs rely on the use of mating disruption tactics to control insect pests. Some programs specifically target non‐native species, such as the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We evaluated SPLAT® GM, a new sprayable formulation of the gypsy moth sex pheromone disparlure, for its ability to disrupt gypsy moth mating. The study was conducted in 2006, 2007, and 2008 in forested areas in Virginia, USA. Mating success of gypsy moth females was reduced by >99% and male moth catches in pheromone‐baited traps by >90%, in plots treated with SPLAT® GM at dosages ranging from 15 to 75 g of active ingredient (a.i.) ha?1. Dosage‐response tests conducted in 2008 indicated that SPLAT® GM applied at a dosage of 7.5 g a.i. ha?1 was as effective as a 15 g a.i. ha?1 dosage.  相似文献   

2.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

3.
In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1–2 years after treatment to determine the effects of the treatment on suppression of trap catch and mating success. In the year of treatment, there was a greater than 95% reduction in trap catch and a greater than 98% reduction in mating success compared to controls. One year after treatment at a dosage of 37.5 g active ingredient (a.i.) ha?1, trap catch was reduced by 46–56% and mating success was reduced by 60–79%. Both trap catch and mating success were significantly reduced compared to controls in plots treated 1 year previously at 15 g a.i. ha?1. Trap catch, but not mating success, was significantly reduced 2 years after treatment at 37.5 g a.i. ha?1. The efficacy of mating disruption (MD) treatments in the Slow‐the‐Spread of the Gypsy Moth program was significantly reduced 2 years compared to 1 year after treatment. No such reduction was observed in plots treated with aerial applications of Bacillus thuringiensis kurstaki. The higher apparent efficacy of MD treatments 1 year after application may result to some extent from the suppression of moth capture in pheromone traps from the persistent effects of the previous year's treatment.  相似文献   

4.
Abstract:  The study was conducted during 2001 and 2002 in forested areas in Virginia, US to examine the effects of gaps in coverage of pheromone on gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating disruption. Gypsy moth male moth catches in pheromone-baited traps were significantly reduced in plots treated with the gypsy moth sex pheromone, disparlure, at an overall application rate of 37.5 g of active ingredient (AI)/ha but with untreated gaps of 30 or 90 m between 30-m wide treated swaths. In one of the two plots with 90 m gaps, significantly more males were captured in traps in the untreated areas compared with the treated areas within the plot. However, in another plot, significant differences in trap catches between treated and untreated areas were not observed. No difference in male moth catches in the pheromone-baited traps was observed between treated and untreated areas within the plots treated with 30 m gaps. Female mating success did not differ significantly between treated and untreated areas within the one plot in which it was measured. These results suggest that it may be possible to lower costs associated with gypsy moth mating disruption applications by alternating treated and untreated swaths, which would reduce flight time and fuel costs, without a reduction in efficacy.  相似文献   

5.
Haynes KJ  Liebhold AM  Johnson DM 《Oecologia》2009,159(2):249-256
Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant periodicities: a dominant period of 8–10 years and a subdominant period of 4–5 years. In this study, we used a simulation model and spatially referenced time series of outbreak intensity data from the Northeastern United States to show that the bimodal periodicity in the intensity of gypsy moth outbreaks is largely a result of harmonic oscillations in gypsy moth abundance at and above a 4 km2 scale of resolution. We also used geographically weighted regression models to explore the effects of gypsy moth host-tree abundance on the periodicity of gypsy moths. We found that the strength of 5-year cycles increased relative to the strength of 10-year cycles with increasing host tree abundance. We suggest that this pattern emerges because high host-tree availability enhances the growth rates of gypsy moth populations.  相似文献   

6.
Gypsy moth mating disruption in open landscapes   总被引:1,自引:0,他引:1  
1 Aerial applications of Disrupt II, a plastic laminated flake formulation containing a racemic form of the gypsy moth sex pheromone, disparlure, achieved > 99% reduction of mating among females on individual, isolated trees surrounded by an area cleared of trees.
2 These results support the use of mating disruption to eradicate isolated gypsy moth populations in open landscapes, such as parks, residential areas and commercial settings.
3 Mating success in both treated and untreated areas varied with the initial distance between males and females. When the initial distance between males and females was < 5 cm in an area receiving a dosage of 37.5 g of racemic disparlure per ha, mating success was reduced by 27% compared with a similar deployment in an untreated area. Mating was eliminated in areas treated at the same dosage when males and females were initially deployed 1 m apart but on separate trees.
4 This suggests that mating disruption may not be an effective tactic for gypsy moth eradication in cases where the infestation is concentrated on a small number of trees and males and females are in close proximity in space and time.  相似文献   

7.
The study was conducted during 2000, 2001, 2003 and 2004 in forested areas in Virginia, USA to evaluate the 3M™ MEC-GM Sprayable Pheromone® formulation of the gypsy moth sex pheromone, disparlure, for its ability to disrupt mating in gypsy moth, Lymantria dispar (Lep.: Lymantriidae). Both mating success of gypsy moth females and male moth catches in pheromone-baited traps were significantly reduced in plots treated with the 3M™ MEC-GM formulation at dosages ranging from 15 to 75 g of active ingredient/ha. However, the 3M™ MEC-GM formulation reduced trap catch to a lesser extent than did the currently registered Hercon Disrupt® II plastic flakes used as a positive control and applied at similar or lower dosages. Furthermore, the effectiveness of the 3M™ sprayable formulation declined through time, so that by the end of the male flight season, male moth catches in traps were significantly higher than in plots treated with Hercon plastic flakes. Based on the reported results, 3M™ MEC-GM Sprayable Pheromone® formulation was never integrated into the operational treatment projects of USDA Forest Service Cooperative Slow-the-Spread of the Gypsy Moth management programme.  相似文献   

8.
The effects of aerial applications of the gypsy moth sex pheromone, disparlure, on mating disruption and suppression of growth of populations of the gypsy moth, Lymantria dispar (L.), were investigated. Two formulations of disparlure, plastic laminate flakes applied in a single application and polymethacrylate beads applied in two applications, were compared in two separate tests conducted in 1993 and 1994. The beads were applied in two applications spaced 2 weeks apart because preliminary tests had indicated that they released pheromone too rapidly to maintain adequate emission rates throughout the period of male flight. In 1993, the flakes were applied at a rate of 50 g a.i./ha, and the beads were applied at a rate of 15 g a.i./ha for each application. In 1994, the flakes were applied at a rate of 75 g a.i./ha and the beads were applied at rates of 32.5 and 42.5 g a.i./ha for the two applications. Beads with larger average particle size were used in 1994 to prolong disparlure release. The treatments applied in 1993 resulted in >97% reduction in mating and >82% suppression of population growth in the following year. Because of a 1995 collapse of gypsy moth populations in the vicinity of the tests, reliable population growth data were not available for the treatments applied in 1994, but significant mating disruption did occur under both treatments. Based on measurements of residual disparlure after field aging, the flakes released 32 and 48% of their disparlure content during the 6 weeks of male moth flight in 1993 and 1994, respectively. The smaller beads used in 1993 released 75% of their disparlure content, and the larger beads used in 1994 released 52% of their disparlure content, during the 6 weeks of male flight. The biological efficacy data suggest that the bead and flake formulations, as applied in these tests, have similar effects on gypsy moth mating disruption and subsequent population growth. Based on the observed release rates from both 1993 and 1994, a single application of the beads would provide emission rates equal to or greater than those provided by the flakes when applied at an equal dose.  相似文献   

9.
1 The plastic laminate flake formulation, Disparlure II, is currently the only gypsy moth mating disruption product available for aerial application. The elimination of a sticking agent from the formulation would reduce costs, simplify application, and make it possible to apply the product without specialized equipment. 2 A test was conducted in wooded plots in Virginia during 1997 and 1998 to determine whether a sticking agent is necessary. Treatment effectiveness was assessed from the rates of male moth capture in pheromone‐baited traps and mating success of both laboratory‐reared and wild females. 3 Male moth capture was reduced 75.6 and 92.9% in plots treated with flakes without and with a sticking agent, respectively. The percentage of mated females that produced egg masses with more than 5% fertile eggs was reduced by 86.3 and 99.5% in plots treated with flakes without and with a sticking agent, respectively. 4 Moth capture and mating success of laboratory‐reared females did not differ significantly between plots treated with flakes with and without a sticking agent. However, the consistently greater reduction in mating success in both years provides strong evidence that mating disruption is less effective when flakes are applied without a sticking agent. The proportion of wild egg masses collected in 1998 with more than 5% fertile eggs was significantly higher under the no‐sticking agent treatment. 5 In special situations where the use of a sticking agent may be problematic, such as in residential areas, the data indicate that a high level of mating disruption is likely to occur even without the use of a sticking agent.  相似文献   

10.
1 Mating disruption is the primary tactic used to reduce rates of gypsy moth population spread in the United States Department of Agriculture’s Slow‐the‐Spread of the gypsy moth programme (STS). Because STS targets very low‐density gypsy moth populations within which it is extremely difficult to collect females or egg masses, mating success in native populations cannot be determined. Therefore, the evaluation of mating disruption treatments in field experiments such as those designed to test new formulations and application methods requires deploying and recovering laboratory‐reared female moths to determine mating success. 2 Five methods of deploying females were evaluated for cost, rates of female and egg mass recovery, and female mating success. The deployment methods tested were: modified delta trap, square barrier, single and double trunk bands, and tethered females. 3 Deployment of tethered females had the highest cost and mating success rate, but it did not yield the highest rates of female and egg mass recovery. Deployment of females in delta traps produced the lowest cost and mating success rate, but yielded the highest recovery rate. Neither of these deployment methods is recommended because of unacceptably high cost (tethered female) or low mating success (delta trap). 4 There were no significant differences in cost or mating success among the other three deployment methods. 5 The differences among the square barrier, single trunk band, and double trunk band methods in cost, female and egg mass recovery, and mating success are too small to recommend any one over the others.  相似文献   

11.
Gypsy moth, Lymantria dispar L., is one of the most important pests of deciduous trees in Europe. In regular cycles, it causes large‐scale defoliation mostly of oak, Quercus spp., forests. Government authorities in the most infested countries in Europe conduct large‐scale applications of pesticides against gypsy moth. In 1999, a new natural enemy, the entomopathogenic fungus Entomophaga maimaiga, was successfully introduced into a gypsy moth population in Bulgaria. Recent investigations suggest that now E. maimaiga is quickly spreading in Europe. Herein, past studies are reviewed regarding this fungus with special emphasis on its potential for becoming an important factor regulating gypsy moth populations in Europe, focusing on the host's population dynamics in relation to the fungus, the influence of environmental conditions on fungal activity, the influence of E. maimaiga on the native entomofauna, including other gypsy moth natural enemies, and spread of the fungus. Based on this analysis, the potential of E. maimaiga for providing control in European gypsy moth populations is estimated.  相似文献   

12.
  • 1 Spatial fluctuations of the Sardinian population of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) were characterized using geostatistical and climate models. Data on gypsy moth egg mass abundance recorded at 282 permanent monitoring sites from 1980 to 2004 were incorporated in a geographic information system with the vegetational, geomorphological and pedological features of the sites.
  • 2 Statistical analyses revealed that the relative outbreak frequency was related to the predominant host tree, slope and elevation of the monitoring sites, whereas there was no correlation between outbreak frequency and exposure and soil type.
  • 3 By using bioclimatic modelling, probability maps of gypsy moth outbreaks were generated. The model identified a probability surface with climatic conditions favourable to gypsy moth outbreaks and thus potentially subject to defoliation. The maps included 92 sites where outbreaks never occurred, suggesting that the Sardinian climate may not be a determinant factor for gypsy moth outbreaks.
  • 4 The geostatistical method cokriging with outbreak frequency as a covariate was found to be the most suitable technique to estimate gypsy moth egg mass abundance. Semivariograms showed spatial correlation of egg mass abundance within the range 18.5–53 km. The results obtained were used to create regional gypsy moth distribution maps by cokriging, which demonstrated the outbreak foci and different infestation levels at each monitoring area. These results can help to delimit the treatment areas and develop rational gypsy moth management programmes.
  相似文献   

13.
The nun moth, Lymantria monacha L., is one of the most important defoliators of Eurasian coniferous forests. Outbreaks during 2011–2015 in the natural/planted larch, and larch‐birch mixed forests of the Greater Khingan Range in Inner Mongolia, China, caused tremendous timber losses from severe defoliation and tree mortality. A series of trapping experiments were conducted in these outbreak areas to evaluate the efficacy of a synthetic species‐specific pheromone lure based on the female pheromone blend of European nun moth populations. Our results clearly show that the nun moth in Inner Mongolia is highly and specifically attracted to this synthetic pheromone, with few gypsy moths (Lymantria dispar) captured. Flight activity monitoring of L. monacha male moths using pheromone‐baited Unitraps at 2 locations during the summer of 2015 indicated that the flight period started in mid‐July, peaking in early August at both locations. Based on male moth captures, there was a strong diurnal rhythm of flight activity throughout the entire scotophase, peaking between 22:00 and 24:00. Unitraps and wing traps had significantly and surprisingly higher catches than the gypsy moth traps. Unitraps fastened to tree trunks 2 m above ground caught significantly more male moths than those at the ground level or at 5 m height. Male L. monacha moths can be attracted to pheromone‐baited traps in open areas 150–200 m distant from the infested forest edge. Our data should allow improvement on the performance of pheromone‐baited traps for monitoring or mass‐trapping to combat outbreaks of this pest in northeastern China.  相似文献   

14.
15.
Mating disruption alone and mating disruption supplemented with limited applications of either azinphos-methyl or fenoxycarb was evaluated in 0.11–0.30 ha plots for the control of codling moth Cydia pomonella (L.) (Tortricidae: Olethreutinae) populations.Where populations were low, mating disruption alone was sufficient to keep codling moth damage levels below 1% at harvest. Low was defined as no more than 0.2% damage at harvest and fewer than 1.3 larvae/metre of trap band from January–March inclusive in the previous season. Neither mating disruption alone nor when supplemented with azinphos-methyl or fenoxycarb during the first spring generation gave commercially acceptable levels of control in other than low density populations. Small plot size may have contributed to the failures.At the high density site unintentional supplementary control provided by drift of azinphos-methyl from border areas to which it was applied throughout the season gave excellent control in the first year and suggested an interaction between low dosages of insecticide and pheromone treatments that enhanced the disruptive effect of the latter.  相似文献   

16.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

17.
Abstract 1 Sex pheromone‐mediated mating disruption can be used to provide economic control of the North American grape berry moth in commercial vineyards. Controlled release devices that use a plastic tube or polymer to regulate the emission of pheromone have been registered for use in Canada for controlling this pest. These dispensers require manual application, whereas a newly developed microencapsulated formulation can be applied using a vineyard airblast sprayer. 2 The efficacy of 3M Sprayable Pheromone was compared with the efficacy of Isomate® GBM pheromone dispensers and organophosphorus insecticide for controlling the grape berry moth during the 1997 and 1998 growing seasons. Two application schedules of sprayable pheromone were tested during 1997 and two formulations of sprayable pheromone were tested during 1998. The mating disruption efficiency of the pheromone treatments was compared using pheromone‐baited traps and the efficacy of the pheromone and insecticide treatments was compared by inspecting grape clusters for feeding injury caused by grape berry moth larvae. 3 The estimated mating disruption efficiency of the pheromone treatments ranged from 67 to 100%. There was no difference in the efficiency of the two application schedules of 3M Sprayable Pheromone during 1997. The estimated efficiency of Isomate® GBM was greater than that of 3M Sprayable Pheromone during the first two flights of 1997. During 1998, the estimated efficiency of 3M Sprayable Pheromone and Isomate® GBM was similar. 4 The average percentage of grape clusters with grape berry moth feeding injury was greater in the border than in the interior zone on 13 ocassions, and greater in the interior zone than in the border zone of experimental plots on six of the 72 occasions when clusters were inspected during the 2‐year study. 5 The average percentage of grape clusters with feeding injury was similar in plots treated with 3M Sprayable Pheromone, Isomate® GBM and insecticide during both years of the study. There was no difference in feeding injury in plots treated with 3M Sprayable Pheromone and Isomate® GBM, despite the greater estimated mating disruption efficiency of Isomate® GBM. 6 The use of sprayable pheromone may have several operational and cost advantages compared with a hand‐applied dispensing system such as Isomate® GBM.  相似文献   

18.
The gypsy moth—Lymantria dispar (Linnaeus)—is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth (L. dispar asiatic), four pairs of specific primers for the nun moth (L. monocha), and three pairs of specific primers for the casuarina moth (L. xylina). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China.  相似文献   

19.
Abstract:  A portable electroantennogram (EAG) sensor was used to measure relative atmospheric pheromone concentration in forest plots treated with aerial and ground applications of gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating-disruption formulations. Five treatments (Disrupt II flakes with sticker, Disrupt II flakes without sticker, Disrupt II flakes in a sticker slurry, microcapsules and hand-applied Luretape), all applied at 75 g active ingredient per hectare and an untreated control were evaluated. Gypsy moth male catch in pheromone-baited traps and fertilization of deployed females were suppressed in all treatments, and no females deployed in treated plots produced more than 5% fertile eggs. Relative pheromone concentrations were significantly higher in the two treatments in which flakes were aerially applied with sticker and in the microcapsule treatment. Pheromone concentration measurements in the flakes without sticker and hand-applied treatments were not significantly different from those in the control. Mating success was negatively correlated with relative pheromone concentration. The ability of the EAG to detect differences in pheromone concentration that are correlated with mating success suggests that this could be a useful method for predicting the effectiveness of mating-disruption treatments.  相似文献   

20.
Habitat type, fragmentation, and edge effects can play important roles in the mate‐finding abilities of many species. These effects can be particularly pronounced in low‐density populations, which are often found at the margins of species' ranges or at the leading edge of an invasion. The European gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is a non‐native insect defoliator in the USA and Canada, where flightless females attract male moths through pheromone production and local extirpation of low‐density populations can be due to mate‐finding failure. To assess the effects of habitat edges on the ability of gypsy moths to find mates, we conducted a release experiment with male gypsy moths using female‐baited trap arrays in fields, at forest edges, and in the forest interior. Reduced mate‐finding was expected in fields and near forest edges based on geographic variation in invasion rates, male flight behavior, and pheromone plume dynamics. However, we found that mate‐finding was highest at forest edges, reduced in fields, and lowest within the forest interior. Within an array, traps closest to the forest edge also had the highest mate‐finding, suggesting that habitat characteristics can influence male flight direction in addition to pheromone cues. These results suggest that a moderate level of forest fragmentation enhances mate‐finding ability in the gypsy moth. Understanding the relationship between habitat heterogeneity and mate‐finding success in invasive species can inform predictions of future spread and assist with management plans that target mating disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号