首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The research objective was to develop pheromone-based monitoring of the nun moth, Lymantria monacha (L.), an important defoliator of spruce and pine forests in central Europe. In 38 spruce or pine forests in central Europe, captures of male L. monacha in nonsaturating Unitraps and saturating Delta sticky traps baited with 0.2, 2, 20, or 200 μg of the L. monacha (pheromone) volatile blend [(±)-disparlure, (±)-monachalure, and 2-methyl- Z 7-octadecene at a 20 : 20 : 1 ratio] were compared with estimates of population densities obtained by counts of larval faecal pellets, pupal cases, and adult moths resting on tree trunks. Total captures of male L. monacha throughout the flight season in both types of trap were correlated with numbers of larval faecal pellets, irrespective of pheromone dose. Nonsaturating Unitraps baited with 2 μg of the L. monacha volatile blend seem to provide a cost-effective tool for monitoring densities of L. monacha populations. Long-term testing of this monitoring system has been initiated to substantiate the quantitative relationship between larval populations and trap captures of male L. monacha and to determine the threshold number of captured male moths that indicates an incipient outbreak.  相似文献   

2.
Habitat type, fragmentation, and edge effects can play important roles in the mate‐finding abilities of many species. These effects can be particularly pronounced in low‐density populations, which are often found at the margins of species' ranges or at the leading edge of an invasion. The European gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is a non‐native insect defoliator in the USA and Canada, where flightless females attract male moths through pheromone production and local extirpation of low‐density populations can be due to mate‐finding failure. To assess the effects of habitat edges on the ability of gypsy moths to find mates, we conducted a release experiment with male gypsy moths using female‐baited trap arrays in fields, at forest edges, and in the forest interior. Reduced mate‐finding was expected in fields and near forest edges based on geographic variation in invasion rates, male flight behavior, and pheromone plume dynamics. However, we found that mate‐finding was highest at forest edges, reduced in fields, and lowest within the forest interior. Within an array, traps closest to the forest edge also had the highest mate‐finding, suggesting that habitat characteristics can influence male flight direction in addition to pheromone cues. These results suggest that a moderate level of forest fragmentation enhances mate‐finding ability in the gypsy moth. Understanding the relationship between habitat heterogeneity and mate‐finding success in invasive species can inform predictions of future spread and assist with management plans that target mating disruption.  相似文献   

3.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

4.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

5.
ABSTRACT. Two odour receptor cells were physiologically identified within male antennal hair sensillae of the gypsy moth, Lymantria dispar L, and the nun moth, L. monacha L. In the gypsy moth, one cell responded to (+)-disparlure, while a neighbouring cell responded to (-)-disparlure. In the nun moth both cells responded to (+)-disparlure. The lack of sensitivity to (-)-disparlure in the nun moth was corroborated by electroantennogram (EAG) recordings, which indicated no affinity to this enantiomer. Single cell responses of male gypsy moth to different concentrations of the synthetic enantiomers of disparlure were then compared to responses elicited by hexane extracts of female glands of both species. The gypsy moth's extracts stimulated almost exclusively the receptor cell specialized for (+)-disparlure, while both cells were simultaneously stimulated by the extracts of the nun moths. From the response characteristic of the cells it is estimated that pheromone production of the nun moth is about 10% (+) and 90% (-)-disparlure, and that of the gypsy moth is almost 100% (+)-disparlure. Stimulation of the antenna of each species by female gland extracts of both species did not indicate the presence of receptors for other hexane elutable pheromone components in either species.  相似文献   

6.
Multispecies trapping of six pests of scots pine in Sweden and Poland   总被引:1,自引:0,他引:1  
Abstract:  Multispecies sex pheromone trapping (trapping of more than one species in the same trap) for the pine shoot moth Rhyacionia buoliana , the pine moth, Dendrolimus pini , the nun moth, Lymantria monacha , the pine beauty moth, Panolis flammea and the pine sawflies Diprion pini and Neodiprion sertifer was evaluated. The catch from traps baited with the pheromone of a single species was compared with the catch from traps baited with pheromones for several species. The catch in the multispecies traps was significantly reduced in comparison with the single species traps for Dendrolimus pini , L. monacha and N. sertifer . Neodiprion sertifer was most likely inhibited by the Diprion pini pheromone. A follow-up study of Dendrolimus pini and L. monacha showed no pheromonal interference between them. Further studies are needed to evaluate the feasibility of multispecies monitoring. However, for practical applications a slight decrease in catch, due to pheromonal interference, could probably be tolerated as long as the catch reflects total population density.  相似文献   

7.
Sexual communication of nun moth, Lymantria monacha (L.), pink gypsy moth, Lymantria mathura Moore, and fumida tussock moth, Lymantria fumida Butler (all Lepidoptera: Noctuidae: Lymantriinae), is known to be mediated by pheromones. We now show that males are attracted by the sounds of conspecific females over short distances and that wing fanning male and female L. monacha, L. mathura and L. fumida produce species- and sex-specific wing beat and associated click sounds that could contribute to reproductive isolation. Evidence for short-range communication in these lymantriines includes (i) scanning electron micrographs revealing metathoracic tympanate ears, (ii) laser interferometry showing particular sensitivity of tympana tuned to frequency components of sound signals from conspecifics, and (iii) phonotaxis of male L. monacha and L. fumida to speakers playing back sound signals from conspecific females. We conclude that tympanate ears of these moths have evolved in response not only to bat predation, but also for short-range mate finding and possibly recognition.  相似文献   

8.
Summary The closely related species of the gypsy and the nun moth (Lymantria (Porthetria) dispar andL. monacha) were investigated with respect to their electrophysiological (electro-antennogram and single cell) responses to the sex pheromone (disparlure:cis-7,8-epoxy-2-methyl-octadecane) and 56 structurally related epoxides and the disparlure-precursor olefin. Within the limitations of reproducibility of the measurements the sequence of the effectiveness of all the tested compounds is nearly identical in both species, disparlure being every time the most effective compound. From this is deduced a high similarity in the receptor systems for female pheromones of the two moth species.  相似文献   

9.
Several integrated pest management programs rely on the use of mating disruption tactics to control insect pests. Some programs specifically target non‐native species, such as the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We evaluated SPLAT® GM, a new sprayable formulation of the gypsy moth sex pheromone disparlure, for its ability to disrupt gypsy moth mating. The study was conducted in 2006, 2007, and 2008 in forested areas in Virginia, USA. Mating success of gypsy moth females was reduced by >99% and male moth catches in pheromone‐baited traps by >90%, in plots treated with SPLAT® GM at dosages ranging from 15 to 75 g of active ingredient (a.i.) ha?1. Dosage‐response tests conducted in 2008 indicated that SPLAT® GM applied at a dosage of 7.5 g a.i. ha?1 was as effective as a 15 g a.i. ha?1 dosage.  相似文献   

10.
Summary The attractive power of disparlure—the sex attractant of the gypsy moth (Lymantria/Porthetria dispar)—vs. four synthetic analogous epoxides was tested in 1972 in a pine forest near Heidelberg. With two levels of concentration in the traps (2 and 20 g), a total of 1112 nun moths (Lymantria/Porthetria monacha) and 257 gypsy moths were caught in 9 experiments. Approximately equal percentages of the two species were caught with a given compound. Disparlure was by far the most effective attractant. The other substances were between three and twenty times less effective. These experiments support the assumption that disparlure is also at least part of the sexual attractant of the nun moth. In two additional experiments, moth captures by a series of increasing disparlure concentrations (2–100 g/trap) were determined. The catches of both species increased nonlinearly with the bait concentration. The experiments are discussed with respect to new (unpublished) electrophysiological recordings from disparlure receptor cells in both species. Special attention is given to the supposed masking effect of the disparlure precursor (an olefin). This substance is ineffective as an attractant, but has been reported to reduce the attraction of gypsy moth males to disparlure or to live females. However, the olefin elicits excitatory reactions in the same type of receptor cell that responds to disparlure and the related epoxides. Furthermore, no masking of the electrophysiological response was observed with the receptor cells when the olefin was added to disparlure.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

11.
Traps baited with disparlure, the synthetic form of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), sex pheromone are used to detect newly founded populations and estimate population density across the United States. The lures used in trapping devices are exposed to field conditions with varying climates, which can affect the rate of disparlure release. We evaluated the release rate of disparlure from delta traps baited with disparlure string dispenser from 1 to 3 yr across a broad geographic gradient, from northern Minnesota to southern North Carolina. Traps were deployed over approximately 12 wk that coincided with the period of male moth flight and the deployment schedule of traps under gypsy moth management programs. We measured a uniform rate of release across all locations when considered over the accumulation of degree-days; however, due to differences in degree-day accumulation across locations, there were significant differences in release rates over time among locations. The initial lure load seemed to be sufficient regardless of climate, although rapid release of the pheromone in warmer climates could affect trap efficacy in late season. Daily rates of release in colder climates, such as Minnesota and northern Wisconsin, may not be optimal in detection efforts. This work highlights the importance of local temperatures when deploying pheromone-baited traps for monitoring a species across a large and climatically diverse landscape.  相似文献   

12.
Recent large‐cage studies with codling moth Cydia pomonella (L.) reveal that the removal of moths from an apple orchard using pheromone‐releasing traps is more effective at reducing capture in a central monitoring trap than is a mating disruption protocol without kill/capture. The present study uses open orchard 0.2‐ha plots comparing a high‐density trapping scenario with mating disruption to confirm those results. Two tortricid moth pests of tree fruit are studied: codling moth and obliquebanded leafroller Choristoneura rosaceana (Harris). Codling moth treatments include Isomate CM FLEX (ShinEtsu Ltd, Japan), nonsticky traps baited with Trécé CM lures (Trécé, Inc., Adair, Oklahoma), and sticky traps baited with Trécé CM lures, all at equal application rates of 500 dispensers ha?1, as well as a no pheromone control. These microtraps are of a novel design, small and easy to apply, and potentially inexpensive to produce. Mating disruption using Isomate CM FLEX and nonsticky traps reduces codling moth capture in standard monitoring traps by 58% and 71%, respectively. The attract‐and‐remove treatment with sticky traps reduces capture by 92%. Obliquebanded leafroller treatments include Isomate OBLR/PLR Plus and Pherocon IIB microtraps baited with Trécé OBLR lures, both applied at 500 dispensers ha?1, as well as a no pheromone control. Mating disruption reduces capture in monitoring traps by 69%. The attract‐and‐remove treatment reduces capture by 85%. Both studies suggest that an attract‐and‐remove approach has the potential to provide superior control of moth populations compared with that achieved by mating disruption operating by competitive attraction.  相似文献   

13.
Traps baited with the sex pheromone blend of (Z7)‐ and (Z5)‐tetradecenyl acetate captured significant numbers of male spotted cutworm moths, Xestia c‐nigrum (L.) compared to unbaited traps. Nearly no males were captured in traps baited with (Z7)‐tetradecenyl acetate, the major pheromone component. Antennae of spotted cutworm males responded to (Z7)‐, (E7)‐, (Z5)‐ and (E5)‐tetradecenyl acetate in the laboratory; however there was no response by moths in the field to the E isomers when presented in traps as major and minor components respectively of a binary blend or to the (E7) isomer as a single component. These findings clarify the makeup of a sex attractant that can be used for monitoring X. c‐nigrum on agricultural crops in Washington. However, multi‐year season‐long monitoring of spotted cutworm moths in Yakima Valley apple orchards revealed differential responses to pheromone and blacklight traps. A spring flight period showed a strong moth response to the pheromone compared to blacklight, while a later summer flight period showed a weak moth response to the pheromone relative to blacklight. At this time, we do not know which trap type might best indicate spotted cutworm abundance and risk to crops.  相似文献   

14.
The allium leafminer, Acrolepiopsis sapporensis Matsumura (Lepidoptera: Acrolepiidae), is a pest of Allium species (Liliaceae) in Asia and Hawaii, USA. We identified candidate sex pheromone components in pheromone gland extracts of female moths and field tested the response of male moths to blends with different components and ratios. Gas chromatographic comparison of abdominal tip extracts from both sexes showed three female‐specific components: (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH). These compounds were identified by mass spectral analysis of natural pheromone components and dimethyldisulfide adducts, and retention index comparisons with synthetic standards. The average ratio of three components, Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH, in female extract was 33:100:14. Field trapping experiments indicated that all three components were essential for maximal attraction of male moths. Traps baited with a ternary blend mimicking the blend found in the pheromone gland extracts caught significantly more males than traps baited with caged live females. Increasing doses of the pheromone blend in the lures from 0.01 to 1.0 mg increased catches of male A. sapporensis.  相似文献   

15.
Recent introduction of Synanthedon myopaeformis (Borkhausen) (Lepidoptera: Sesiidae) into organic apple‐growing areas of Canada has stimulated research on semiochemical‐based management of this European pest. Replicated, small‐plot (0.16 ha) experiments were conducted to compare sex pheromone, 3Z,13Z‐octadecadienyl acetate (10 mg), Concord grape juice (300 ml), or their combination, as mass‐trapping lures at trap densities equivalent to 12.5, 25, 50, and 100 traps ha?1. Total numbers of male and female moths removed from test plots increased significantly with trap density in all juice‐based mass‐trapping experiments. In pheromone mass‐trapping experiments, however, total catches of males did not increase significantly as trap densities were increased and catches appeared to plateau with 25–50 traps ha?1. With pheromone‐based mass‐trapping, significantly fewer males were caught in pheromone‐baited assessment traps at the centre of each mass‐trapping plot than in identical traps in untreated plots. This reduction is indicative of significant trap interference or trap ‘shut‐down’. Increasing the density of juice‐based mass‐trapping had no effect on catches of male or female moths in juice‐baited assessment traps, indicating a short range of attraction and lack of interference between juice traps. Pheromone‐ and juice‐based mass trapping removed similar numbers of males at each trap density tested, respectively, but summed catches of males and females were greatest with juice baits. Combining pheromone and juice into a single mass‐trapping treatment (50 traps ha?1) did not significantly increase catches of males or females relative to either treatment alone. If a practical bisexual mass‐trapping system is going to be developed for S. myopaeformis, then identification of volatile kairomones in Concord grape juice may be useful.  相似文献   

16.
Results obtained by mass trapping using the synthetic pheromone (Z,E)‐9,12‐tetradecadienyl acetate (TDA) are reported. The trapping was carried out over a period of 5 years to control infestation by Mediterranean flour moth, Ephestia kuehniella Zeller, and protect a flour mill. From March 2004 till November 2008, 42 funnel traps, each baited with 2 mg of TDA, were placed in the mill. Eight additional traps were located at the exterior of the facility, especially in the wheat silo area and near the loading equipment. Over 5 years, the pheromone traps attracted a total of 54 170 male Mediterranean flour moths. The constant presence of the traps caused a marked decrease in the E. kuehniella population from 2004 to 2008. The results of the surveys show that the population density of the moth can be notably reduced and then maintained at a low level in flour mills by means of mass trapping techniques accompanied by localized insecticide treatments and careful cleaning of the various departments and of the interior of all equipment. As it is not possible at present to establish the economic injury level of insect infestation in flour mills, there is a need for investigations into how the effectiveness of IPM programs can be evaluated in more detail.  相似文献   

17.
Sticky traps baited with sex pheromone are the most common trapping devices used in monitoring of moth pests in food warehouses and food processing. However, these traps only capture males, and it is debatable whether captures of male moths can be used as spatio‐temporal indicators of hot spots of conspecific larvae (only larvae are responsible for damage to food products). Water has been documented as highly attractive to stored product moths, and here we present the first performance data on water bottles as monitoring devices. On average, water bottles caught 15 times more Indianmeal moths [Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae)] than unbaited sticky traps and 74 times more moths than probe traps. We showed that hole size in water bottles had negligible effect on their trapping performance in a naturally infested peanut warehouse. Experimental evaluation of water loss over time showed that smaller holes dramatically reduced water evaporation (less frequent service required), and detergent can be added to the water to reduce moth decomposition without adversely affecting water attractiveness (trap performance). Trap captures of males and females were linearly correlated, and based on quantitative statistical analysis [Spatial Analysis by Distance IndicEs (SADIE)], we showed that weekly captures of the two sexes were spatially correlated. The applied implications of using water bottles in improved IPM of moths in food facilities are discussed.  相似文献   

18.
Studies in Argentina and Chile during 2010–2011 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta‐shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom centre of the trap. The screened lid of the jar was inserted inside the trap, and moths were caught on a sticky insert surrounding the lid. The Ajar trap was evaluated with and without the addition of a sex pheromone lure and compared with delta traps left unbaited or baited with a sex pheromone lure and a bucket trap filled with the same liquid bait. Studies were conducted in a sex pheromone‐treated orchard in Argentina and an untreated orchard in Chile. In Chile, the Ajar trap without the sex pheromone lure caught significantly fewer males, females and total moths than the bucket trap, and fewer males and more females than the sex pheromone‐baited delta trap. Total moth catch did not differ between the Ajar trap without a sex pheromone lure and the sex pheromone‐baited trap. Adding a sex pheromone lure to the Ajar trap significantly increased total moth catches to levels not different from those in the bucket trap. However, the Ajar trap with the sex pheromone lure caught significantly more males and fewer females than the bucket trap. In Argentina, the Ajar trap with or without the addition of a sex pheromone lure caught similar numbers of both sexes and total moths as the bucket trap. The sex pheromone‐baited delta trap caught <4% of the number of moths as these three traps. The bucket trap in both studies caught significantly more non‐targets than the delta and Ajar traps. Moth catches in the Ajar trap declined significantly after 2–3 weeks when the bait was not replaced.  相似文献   

19.
Studies in Oregon, California, Pennsylvania and Italy evaluated the relative performance of the Ajar trap compared with several other traps for the capture of Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta‐shaped trap with a screened jar filled with an aqueous terpinyl acetate plus brown sugar bait solution (TAS) that opens inside the trap and is surrounded by a sticky liner. The TAS‐baited Ajar trap was evaluated with and without the addition of a sex pheromone lure and compared with a delta trap baited with a sex pheromone lure and a bucket trap filled with the TAS bait. Although the Ajar trap had a 90% lower evaporation of the TAS bait than the bucket trap, both of them caught similar numbers in the majority of the field tests of both sexes of G. molesta. The addition of the sex pheromone lure did not increase moth catches by the TAS‐baited Ajar trap. The TAS‐baited Ajar trap caught significantly greater numbers of moths than the sex pheromone‐baited delta trap in 18 of the 20 orchards. Few hymenopterans were caught in orange TAS‐baited Ajar traps, but the catch of flies and other moths relative to the target pest remained high. Flight tunnel and field tests evaluated the effect of several screen designs on the catches of G. molesta and non‐target species. All exclusion devices significantly reduced the catch of larger moths. However, designs that did not reduce the catch of male G. molesta did not reduce the catch of muscid flies. Exclusion devices with openings <7.0 mm significantly reduced the catch of female G. molesta. The addition of (E)‐β‐farnesene, (E)‐β‐ocimene or butyl hexanoate septa lures to TAS‐baited Ajar traps significantly increased total moth catch. The addition of (E)‐β‐ocimene also significantly increased female moth catch.  相似文献   

20.
Combined attracticide formulations targeting Oriental fruit moth, Grapholita molesta (Busck), and codling moth, Cydia pomonella (L.), were tested in a field trapping experiment. Capture of male codling moths in traps baited with the combined formulation was reduced compared with traps baited with the codling moth formulation alone, whereas capture of male Oriental fruit moth was increased compared with traps baited with the Oriental fruit moth formulation alone. Subsequent wind tunnel experiments showed that a single locus of the mixed attracticide formulation or close parallel presentation of the two formulations enhanced source contact by male Oriental fruit moths but did not influence earlier behaviors. However, the two formulations presented in a serial arrangement to Oriental fruit moth males in the wind tunnel resulted in enhanced lock-on, upwind flight, and source contact behaviors. In addition, male Oriental fruit moths remained on mixed pheromone droplets of the paste matrix longer than on droplets of the Oriental fruit moth formulation alone. The increased time spent on the mixed droplet was correlated with a more rapid poisoning and a greater proportion of poisoned males compared with males exposed to the Oriental fruit moth attracticide alone. These results demonstrate that a combined attracticide formulation will have different effects on each of the targeted species. It is anticipated that, due to decreased attractiveness, a combined formulation would be less effective against the codling moth. However, a mixed formulation, due to increased attractiveness and toxicity, could be more effective against the Oriental fruit moth under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号