首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
The widespread destruction and fragmentation of natural habitats around the world creates a strong incentive to understand how species and communities respond to such pressures. The vast majority of research into habitat fragmentation has focused solely on species presence or absence. However, analyses using innovative functional methodologies offer the prospect of providing new insights into the key questions surrounding community structure in fragmented systems. A key topic in fragmentation research is nestedness (i.e. the ordered composition of species assemblages involving a significant tendency for packing of the presence–absence matrix into a series of proper subsets). To date, nestedness analyses have been concerned solely with nestedness of species membership. Here, we capitalize on the publication of a recent nestedness index (traitNODF) in which the branch lengths of functional dendrograms are incorporated into the standard NODF nestedness index. Using bird community data from 18 forest‐habitat‐island studies, and measurements of eight continuous functional traits from over 1000 bird species, we conduct the first synthetic analysis of nestedness from a functional perspective (i.e. a nestedness analysis which incorporates how similar species are in terms of their ecological traits). We use two null models to test the significance of any observed functional nestedness, and investigate the role of habitat island area in driving functional nestedness. We also determine whether functional nestedness is driven primarily by species composition or by differences in species’ traits. We found that the majority (94%) of datasets were functionally nested by island area when a permutation null model was used, although only 11–22% of datasets were significantly functionally nested when a more conservative fixed‐fixed null model was used. Species composition was always the most important driver of functional nestedness, but the effect of differences in species traits was occasionally quite large. Our results isolate the importance of island area in driving functional nestedness where it does occur and show that habitat loss results in the ordered loss of functional traits. This analysis demonstrates the potential insights that may derive from testing for ordered patterns of functional diversity. Synthesis The widespread fragmentation of natural habitats around the world creates a strong incentive to understand how ecological communities respond to such pressures. A key topic in this research agenda is nestedness; however, to date, nestedness analyses have been concerned solely with species presence or absence. Using data from 18 bird‐habitat‐island studies we conduct the first synthetic analysis of nestedness from a functional perspective (i.e. a nestedness analysis which incorporates how similar species are in terms of their ecological traits). Our findings suggest that many bird‐habitat island communities are significantly functionally nested, although our results were sensitive to the null model used. Our study demonstrates the benefits of testing for ordered patterns of functional diversity.  相似文献   

2.
The replacement of natural by anthropogenic habitat changes biological communities in any biome. Variations in environmental conditions along the chronosequence of tree plantations may act as a gradient of environmental filtering where the gain or loss of species occurs. It is expected that environmental filtering increases with the decrease in environmental similarity between the plantations and the natural habitat. Young tree plantations are structurally more similar to grasslands than to mature plantations, which in turn are structurally more similar to subtropical forest than young plantations. This study compares patterns of beta diversity across exotic pine plantation chronosequences in contrasting biomes. We predict that taxonomic and functional beta diversity between plantation and the natural habitat assemblages increase with plantation age in grasslands and decrease in the subtropical forest. We sampled epigean ants and measured environmental variables at 54 plantations of different ages and natural habitats in grassland and forest biomes in Argentina. Taxonomic and functional beta diversity between natural habitat and pine plantations were estimated through dissimilarity indexes of turnover and nestedness. To assess the response of beta diversity estimators to plantation age we performed general linear and non-linear models. Results revealed opposite beta diversity patterns between biomes along the plantation cycle. Turnover increased and nestedness decreased with declining environmental similarity between pine plantations and the natural habitats; changes in the identity of the species were coupled to changes in their functional characteristics. Thus, a given environmental gradient may produce different diversity patterns depending on the regional species pool. Forestry practices that generate environmental conditions similar to natural environments could help to conserve species from the natural habitat.  相似文献   

3.
4.
海南尖峰岭热带山地雨林林冠层树种功能多样性特征   总被引:4,自引:0,他引:4  
以海南尖峰岭热带山地雨林3块1 hm2样地为研究对象,利用11个林冠功能性状结合样地地形及林冠乔木树种样地清查数据,分别基于单维性状和多维性状比较物种多度加权对群落功能离散度指数——平均成对距离(MPD)和平均最近类群距离(MNTD)的影响;同时分析林冠层功能丰富度(FRic)与物种丰富度之间的关系,最后利用零模型探讨不同生境类型下标准化效应MPD和MNTD(经过物种多度加权且剔除群落物种丰富度差异影响)的变化,进而评价林冠层群落水平功能多样性格局及其对局域生境异质性的响应.结果表明: 功能性状维度和物种多度对MPD的影响强烈,不同维度功能性状多度加权前后MPD相关性较弱(R=0.359~0.628);但对MNTD的影响相对较弱,不同维度功能性状多度加权前后MNTD相关性较强(R=0.746~0.820);未经物种多度加权的MPD和MNTD均普遍高估了林冠层的功能离散度.林冠层功能丰富度与物种丰富度基本呈指数相关关系(F=128.20;R2=0.632;AIC=97.72;P<0.001),且功能丰富度很有可能存在一定的物种丰富度阈值.基于不同维度功能性状的林冠层功能多样性格局及其生境响应存在一定的差异性.在生物竞争激烈的低沟生境中,林冠层功能多样性倾向于比预期零模型随机产生的功能多样性高,林冠树种功能性状表现出离散分布;而在其他生境类型中,林冠层功能多样性倾向于接近或低于随机产生的功能多样性,林冠树种功能性状随机或聚集分布.  相似文献   

5.
Aims It is known that taxonomic diversity can be predicted by the spatial configuration of the habitat, in particular by its area and degree of isolation. However, taxonomic diversity is a poor predictor of ecosystem functioning. While functional diversity is strongly linked to the functionality and stability of ecosystems, little is known about how changes in the spatial configuration of the habitat affect functional diversity. In this study, we evaluated whether the spatial configuration of forest patches predicts the functional diversity of plants in a fragmented forest.Methods Five functional leaf traits (leaf dry matter content, leaf punch force, specific leaf area, leaf size and leaf thickness) were measured for 23 dominant plant species in 20 forest patches in a naturally fragmented forest on the Yucatan Peninsula. Abundance-weighted multivariate and individual trait metrics of functional diversity were calculated and correlated with size, degree of isolation and the shape of forest patches.Important findings Patch shape was negatively correlated with multivariate and individual trait (leaf dry matter content and leaf size) metrics of functional diversity. Patch isolation measures were also negatively correlated with individual trait (leaf dry matter content, leaf punch force and leaf size) metrics of functional diversity. In other words, greater patch shape irregularity and isolation degree impoverish plant functional variability. This is the first report of the negative effects of patch shape irregularity and isolation on the functional diversity of plant communities in a forest that has been fragmented for a long time.  相似文献   

6.
Background and AimsAridity is increasing in many regions of the world, but microclimatic conditions may buffer plant communities from the direct effects of decreased precipitation, creating habitat islands. However, reduced precipitation can also impact these communities indirectly by decreasing the suitability of the surrounding habitat, thus limiting incoming propagules and increasing the chances of population decline and species loss. We test whether decreased precipitation results in loss of species and functional diversity within habitat islands, evaluating in particular whether declines in species diversity and abundance are less likely to result in loss of functional diversity if species/individual loss is stochastic (i.e. independent of species/individual traits) and communities/populations are functionally redundant.MethodsLomas communities are discrete plant communities embedded in the Atacama Desert, maintained by the microclimatic conditions created by fog. We recorded species and functional diversity in six Lomas communities along a 500 km long precipitation gradient in northern Chile. Functional traits were measured in 20 individuals per species, in those species that accounted for approx. 75 % of the abundance at each site. We calculated functional diversity and functional redundancy of the community, and intraspecific functional variation.Key ResultsDecreased precipitation was associated with lower species diversity and lower species abundances. However, no traits or functional strategies increased or decreased consistently with precipitation, suggesting stochastic species/individual loss. Species with stress-tolerant strategies were predominant in all sites. Although species diversity decreased with decreasing precipitation, functional diversity remained unchanged. Lower functional redundancy in the drier sites suggests that mainly functionally redundant species were lost. Likewise, intraspecific functional variation was similar among communities, despite the lower species abundance in drier sites.ConclusionsDecreased precipitation can impact habitat island communities indirectly by decreasing the suitability of the surrounding habitat. Our results support the idea that a stochastic loss of species/individuals from functionally redundant communities and populations does not result in loss of functional diversity.  相似文献   

7.
Several amphibian species have ecological traits that can make them vulnerable to landscape changes, such as habitat preference and reproductive strategies. We evaluated how anuran species and their respective reproductive modes were distributed in an Atlantic Forest fragmented landscape, Southeastern Brazil. We sampled through visual encounter surveys three continuous forest sites, 12 forest fragments and five pasture areas (matrix) between July 2007 and March 2010. We recorded 50 anuran species with 15 reproductive modes, a third of them (33.3%) recorded only in continuous forest sites (modes 3, 8, 19, 25 and 36). These reproductive modes found only in continuous forest sites are typically forest‐associated, and seem to be more vulnerable to habitat loss. Additionally, we found a trend for larger fragments to harbor both higher number of types of reproductive sites and diversity of frog reproductive modes. Our findings suggests that fragment sizes can better predict the number of frog reproductive modes than the species richness in Atlantic Forest fragmented landscapes, and highlights the need to consider frog reproductive traits in future studies.  相似文献   

8.
Habitat loss often reduces the number of species as well as functional diversity. Dramatic effects to species composition have also been shown, but changes to functional composition have so far been poorly documented, partly owing to a lack of appropriate indices. We here develop three new community indices (i.e. functional integrity, community integrity of ecological groups and community specialization) to investigate how habitat loss affects the diversity and composition of functional traits and species. We used data from more than 5000 individuals of 137 bird species captured in 57 sites in the Brazilian Atlantic Forest, a highly endangered biodiversity hotspot. Results indicate that habitat loss leads to a decrease in functional integrity while measures of functional diversity remain unchanged or are even positively affected. Changes to functional integrity were caused by (i) a decrease in the provisioning of some functions, and an increase in others; (ii) strong within-guild species turnover; and (iii) a replacement of specialists by generalists. Hence, communities from more deforested sites seem to provide different but not fewer functions. We show the importance of investigating changes to both diversity and composition of functional traits and species, as the effects of habitat loss on ecosystem functioning may be more complex than previously thought. Crucially, when only functional diversity is assessed, important changes to ecological functions may remain undetected and negative effects of habitat loss underestimated, thereby imperiling the application of effective conservation actions.  相似文献   

9.
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.  相似文献   

10.
The interaction between land use and climate change is expected to strongly affect species distributions along high elevation landscapes. We aimed to test the effect of climatic variables on community metrics among five types of land use in a high elevation landscape. We described dung beetle spatial and temporal taxonomic and functional diversity patterns, and partitioned β‐diversity into turnover and nestedness components. The interaction between land use and daily period of activity mostly drives abundance, functional richness and functional diversity, but not dung beetle species richness. Unlike Neotropical lowlands, species richness and abundance in open environments are similar to those existing in forests. Temperature is an important predictor of abundance and functional divergence. There is a higher spatial component of the taxonomic β‐diversity, which is highly driven by species turnover. The temporal component of the taxonomic β‐diversity was strongly driven by nestedness, where night assemblages are sub‐sets, although not entirely, of diurnal assemblages. For functional diversity, the temporal β‐diversity was much higher than the spatial β‐diversity, but both were similarly represented by functional group turnover and nestedness. The composition of nocturnal and diurnal assemblages is clearly different, even more than the differences observed between habitats. However, taxonomic turnover is the dominant force between sampling sites while nestedness dominates the daily pattern. This means that forest habitats are unlikely to act as shelters for grassland species under a scenario of rising temperature.  相似文献   

11.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation.  相似文献   

12.
Sandrine Pavoine 《Oikos》2016,125(12):1719-1732
Ecological studies have now gone beyond measures of species turnover towards measures of phylogenetic and functional dissimilarity. This change of perspective has a main objective: disentangling the processes that drive species distributions from local to broad scales. A fundamental difference between phylogenetic and functional analyses is that phylogeny is intrinsically dependent on a tree‐like structure whereas functional data can, most of time, only be forced to adhere a tree structure, not without some loss of information. When the branches of a phylogenetic tree have lengths, then each evolutionary unit on these branches can be considered as a basic entity on which dissimilarities among sites should be measured. Several of the recent measures of phylogenetic dissimilarities among sites thus are traditional dissimilarity indices where species are replaced by evolutionary units. The resulting indices were named PD‐dissimilarity indices, in reference to early work on the phylogenetic diversity (PD) measure. Here I review and compare indices and ordination approaches that, although first developed to analyse the differences in the species compositions of sites, can be adapted to describe PD‐dissimilarities among sites. Using simulations of species distributions along environmental gradients, I compare indices, associated with permutation tests and null models, in their ability to reveal existing phylogenetic patterns along the gradients. As an illustration, I show that the amount of bat PD‐dissimilarities along a disturbance gradient in Selva Lacandona of Chiapas, Mexico is dependent on whether species' abundance is considered, and on the PD‐dissimilarity index used. Overall, the family of PD‐dissimilarity indices has a critical potential for future analyses of phylogenetic diversity as it benefits from decades of research on the measure of species dissimilarity. I provide clues to help to choose among many potential indices, identifying which indices satisfy minimal basic properties, and analysing their sensitivity to abundance, size, diversity and joint absences.  相似文献   

13.
Baselga [Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19 , 134–143, 2010] proposed pairwise (βnes) and multiple‐site (βNES) beta‐diversity measures to account for the nestedness component of beta diversity. We used empirical, randomly created and idealized matrices to show that both measures are only partially related to nestedness and do not fit certain fundamental requirements for consideration as true nestedness‐resultant dissimilarity measures. Both βnes and βNES are influenced by matrix size and fill, and increase or decrease even when nestedness remains constant. Additionally, we demonstrate that βNES can yield high values even for matrices with no nestedness. We conclude that βnes and βNES are not true measures of the nestedness‐resultant dissimilarity between sites. Actually, they quantify how differences in species richness that are not due to species replacement contribute to patterns of beta diversity. Finally, because nestedness is a special case of dissimilarity in species composition due to ordered species loss (or gain), the extent to which differences in species composition is due to nestedness can be measured through an index of nestedness.  相似文献   

14.
《Acta Oecologica》2004,25(1-2):93-101
Loss and fragmentation of habitat resulting from the clearing of forests for agriculture and urban development threaten the persistence of thousands of species worldwide. The clearing of native forest to plant a monoculture of exotic trees may also reduce and fragment the habitat available for indigenous plants and animals. Metacommunity theory suggests that the species richness of a community in a patch of habitat will increase with patch size but decrease with patch isolation. We investigated whether replacement of native Eucalyptus forest with a plantation of Pinus radiata has reduced and fragmented habitat for frogs, leading to a lower species richness of frog communities in the pine plantation and in small and/or isolated remnant patches of native forest. We surveyed frogs at 60 sites at streams and wetlands in the pine plantation, remnant patches of native forest surrounded by pines, and adjacent areas of contiguous native forest near Tumut in New South Wales, Australia. Only two of eight species of frogs were recorded in the pine plantation, and regression modelling indicated that streams and wetlands in the pines supported fewer frog species than those in remnant patches or the intact native forest. In addition, species richness tended to be higher at wide, shallow swamps and marshes near the headwaters of streams, with herbs, grasses, shrubs, reeds, sedges and rushes in the emergent and fringing vegetation. There was little evidence to suggest that larger eucalypt remnants supported more species of frogs, or that remnants isolated by greater expanses of pines supported fewer species, but we had low power to detect these effects with our data set. Our results support the preservation of all remnants of native forest along drainage lines and around swamps, soaks and bogs, regardless of size. Where new pine plantations are established, for example, on cleared agricultural land, care should be taken to maintain the structural and vegetative characteristics of water bodies to ensure that they continue to provide suitable breeding habitat for frogs.  相似文献   

15.
  1. Species distribution models often fail to predict observed patterns of species diversity, and this is because some species within a regional pool that are tolerant of conditions at a given location may nevertheless be absent from the local community. These missing species have been termed “dark diversity”. In the present study, we investigated which factors explain dark diversity among fish assemblages in Amazonian streams.
  2. We sampled 71 streams in areas with different types of land use within two river basins and estimated dark diversity from patterns of species co-occurrence, using Beals’ index, along environmental gradients. From this procedure, taxa are designated as dark diversity components when they are absent from a given stream, but often co-occur with the local species at other streams, indicating similar ecological requirements. We used generalised linear models both to determine whether environmental or landscape variables, connectivity, instream environmental heterogeneity or some combination of these factors explained dark diversity of fishes, and to evaluate whether ecomorphology is associated with the extent to which a species contributes to dark diversity and which specific traits contribute the most to explaining variation in dark diversity.
  3. Mean local diversity exceeded observed dark diversity. The magnitude of dark diversity was directly associated with the proportion of secondary forest in the immediate catchment and with the index of proximity to anthropogenic impact. Species that have high affinity for environments with higher current velocity, low swimming ability and that capture food mainly on the surface contributed more to dark diversity, which suggests that swimming ability, habitat preference and aspects related to diet are key predictors of the probability that a given species will be present at locations with suitable habitat.
  4. Our findings reinforce the idea that dark diversity results from interactions between species traits and environmental factors, including anthropogenic impacts. Understanding the interplay among environmental factors and species traits that contribute to dark diversity provides targets for improved ecosystem restoration and sustainability of native species assemblages.
  相似文献   

16.
Agricultural expansion is a major driver of biodiversity loss, especially in the megadiverse tropics. Rice is among the world’s most important food crops, invariably affecting biodiversity worldwide. Although the effects of habitat conversion to rice crops on biodiversity are not completely understood, landscape modification often creates conditions that benefit some species and excludes others. We conducted an integrative evaluation of the effects that habitat conversion to irrigated rice crops has on anuran communities from a Cerrado-Amazon ecotone. We adopted a multidimensional approach to compare anuran communities from agricultural and pristine environments considering (i) taxonomic metrics; (ii) functional and phylogenetic diversity; (iii) selected and excluded traits and (iv) body condition indices. When compared to their pristine counterparts, agricultural waterbodies showed increased functional divergence and decreased species diversity and functional richness. Furthermore, agricultural anuran communities exhibited lower phylogenetic diversity. Nonetheless, taxonomic diversity did not vary significantly, suggesting that it should not be used without complementary metrics. Species with small range, habitat specialization, small clutches and large body size were excluded from rice crops. Furthermore, frogs showed lower body condition in crops than in pristine areas. Understanding how species traits correlate with specific responses to agriculture will allow better predictions of the functional effects of anthropogenic land-use. Maintaining high diversity in anthropogenic environments is important for ecosystem resilience because diverse communities are more likely to hold multiple species capable of contributing to ecological functions. Our results show that converting natural vegetation to irrigated rice crops drives many species to local extinction, and resilient species to exhibit lower body condition.  相似文献   

17.
Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high‐density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long‐term dynamic characteristics and functional information.  相似文献   

18.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

19.
Large isolated trees are keystone structures that can help maintain biodiversity in fragmented landscapes, with evidence that open areas with isolated trees may support similar levels of taxonomic diversity to nearby patches of habitat. However, it is not clear if isolated trees can support the same diversity of ecological functions as trees in habitat patches. We compared species richness, community composition, and functional diversity of birds in trees at forest edges and isolated trees. Twenty isolated trees and ten edge trees of American muskwood (Guarea guidonia) were selected, and sampled on 11 occasions, each of 20 min, over four months. All individual birds that landed at trees were recorded using a standardized protocol. Species richness was, on average, almost twice as high at edge trees than at isolated trees. Taxonomic composition differed between edge and isolated trees, with many forest‐dependent birds restricted to edge trees, and some open‐area birds restricted to isolated trees. Overall functional diversity was similar at edge and isolated trees, but some ecological functions (e.g., frugivory) were less frequent, while others (e.g., granivory) were more frequent at isolated compared with edge trees. Isolated trees are important for supporting many ecological functions in modified areas. However, the maintenance of forest patches is essential to complement the provision of such functions in modified landscapes. Abstract in Portuguese is available with online material.  相似文献   

20.
Habitat loss and fragmentation can have severe negative and irreversible effects on biodiversity. We investigated the effects of forest fragmentation on frog diversity in Singapore because of its high rates of deforestation and the demonstration that frogs are some of the most sensitive species to habitat degradation. We surveyed frog species in 12 forest fragments varying from 11 to 935 ha. We compared differences in species richness, abundance, and Shannon's index in relation to forest fragment size, connectivity (distance between fragments), and breeding habitat heterogeneity. A total of 20 species from 12 genera and five families were encountered in 12 fragments. Larger fragments and those closer to larger fragments had higher species richness. Abundance, however, was not correlated with forest area or connectivity, but we found fewer individual frogs in the larger fragments. We also found that breeding habitat heterogeneity best explained frog species diversity and abundance in forest fragments. Fragments with a high diversity of breeding habitats had more species. We found no evidence to suggest that abundance and diversity are strongly correlated, particularly in disturbed areas, but that breeding habitat heterogeneity is an under-appreciated factor that should be considered when prioritizing areas for anuran conservation. Enriching breeding habitat heterogeneity, creating corridors between fragments, and reforesting degraded areas are some of the most beneficial strategies for preserving urban frog biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号