首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity and pore-forming ability of the Bacillus thuringiensis Cry9Ca insecticidal toxin, its single-site mutants, R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at residue 164 were investigated using Manduca sexta neonate larvae and fifth-instar larval midgut brush border membrane vesicles, respectively. Neither the mutations nor the proteolytic cleavage altered Cry9Ca toxicity. Compared with Cry1Ac, Cry9Ca and its mutants formed large poorly selective pores in the vesicles. Pore formation was highly dependent on pH, however, especially for wild-type Cry9Ca and both mutants. Increasing pH from 6.5 to 10.5 resulted in an irregular step-wise decrease in membrane permeabilization that was not related to a change in the ionic selectivity of the pores. Pore formation was much slower with Cry9Ca and its derivatives, including the 55-kDa fragment, than with Cry1Ac and its rate was not influenced by the presence of protease inhibitors or a reducing agent.  相似文献   

2.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

3.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

4.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

5.
Bacillus thuringiensis Cry toxins form pores in the apical membrane of insect larval midgut cells. To investigate their mechanism of membrane insertion, mutants in which cysteine replaced individual amino acids located within the pore-forming domain of Cry1Aa were chemically modified with sulfhydryl-specific reagents. The thiol group of cysteine was highly susceptible to oxidation and its reactivity was significantly increased when the toxins were purified under reducing conditions. Addition of a biotin group to the cysteine had little effect on the ability of the toxins to permeabilize Manduca sexta brush border membrane vesicles except for a slight reduction in activity for S252C and a large increase in activity for Y153C. The activity of Y153C was also significantly increased after modification by reagents that added an aromatic or a charged group to the cysteine. When permeability assays were performed in the presence of streptavidin, a large biotin-binding protein, the pore-forming activity of several mutants, including Y153C, where the altered residue is located within the hairpin comprising helices α4 and α5, or in adjacent loops, was significantly reduced. These results support the umbrella model of toxin insertion.  相似文献   

6.
Identification of the resistance mechanism of insects against Bacillus thuringiensis Cry1A toxin is becoming an increasingly challenging task. This fact highlights the need for establishing new methods to further explore the molecular interactions of Cry1A toxin with insects and the receptor-binding region of Cry1A toxins for their wider application as biopesticides and a gene source for gene-modified crops. In this contribution, a quantum dot-based near-infrared fluorescence imaging method has been applied for direct dynamic tracking of the specific binding of Cry1A toxins, CrylAa and CrylAc, to the midgut tissue of silkworm. The in vitro fluorescence imaging displayed the higher binding specificity of CrylAa–QD probes compared to CrylAc–QD to the brush border membrane vesicles of midgut from silkworm. The in vivo imaging demonstrated that more CrylAa–QDs binding to silkworm midgut could be effectively and distinctly monitored in living silkworms. Furthermore, frozen section analysis clearly indicated the broader receptor-binding region of Cry1Aa compared to that of Cry1Ac in the midgut part. These observations suggest that the insecticidal activity of Cry toxins may depend on the receptor-binding sites, and this scatheless and visual near-infrared fluorescence imaging could provide a new avenue to study the resistance mechanism to maintain the insecticidal activity of B. thuringiensis toxins.  相似文献   

7.
The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R158A/E/Q (R158) could hardly penetrate the PM due to a significantly reduced ability to alter PM permeability; the mutant Y170A, however, could pass through the PM, but degraded in the space between the PM and the midgut epithelium. Further characterization by oligomerization demonstrated that Arg-158 mutants failed to form correctly sized high-molecular weight oligomers. This is the first report that Arg-158 plays a role in the formation of Cry4Ba oligomers, which are essential for toxin passage across the PM. Tyr-170, meanwhile, is involved in toxin stabilization in the toxic mechanism of Cry4Ba in mosquito larvae. [BMB Reports 2014; 47(10): 546-551]  相似文献   

8.
Bacillus thuringiensis produces insecticidal crystal (Cry) proteins which bind to cell surface receptors on the brush border membrane of susceptible midgut larvae. The toxin-receptor interaction generates pores in midgut epithelial cells resulting in cell lysis. Here, a cDNA encoding membrane-bound alkaline phosphatase from Aedes aegypti (Aa-mALP) midgut larvae, based on the sequence identity hit to Bombyx mori membrane-bound ALP, was amplified by RT-PCR and transiently expressed in Spodoptera frugiperda (Sf9) insect cells as a 58-kDa membrane-bound protein via the baculovirus expression system and confirmed by digestion with phosphatidylinositol-specific phospholipase C and LC-MS/MS analysis. Immunolocalization results showed that Cry4Ba is able to bind to only Sf9 cells-expressing Aa-mALP. Moreover, these cells were shown to undergo cell lysis in the presence of 100 ??g/ml trypsin-treated toxin. Finally, trypan blue exclusion assay also demonstrated an increase in cell death in recombinant cells treated with Cry4Ba. Overall results indicated that Aa-mALP protein was responsible for mediating Cry4Ba toxicity against Sf9 cells, suggesting its role as a receptor for Cry4Ba toxin in A. aegypti mosquito larvae.  相似文献   

9.
The effect of pH on the pore-forming ability of two Bacillus thuringiensis toxins, Cry1Ac and Cry1C, was examined with midgut brush border membrane vesicles isolated from the tobacco hornworm, Manduca sexta, and a light-scattering assay. In the presence of Cry1Ac, membrane permeability remained high over the entire pH range tested (6.5 to 10.5) for KCl and tetramethylammonium chloride, but was much lower at pH 6.5 than at higher pHs for potassium gluconate, sucrose, and raffinose. On the other hand, the Cry1C-induced permeability to all substrates tested was much higher at pH 6.5, 7.5, and 8.5 than at pH 9.5 and 10.5. These results indicate that the pores formed by Cry1Ac are significantly smaller at pH 6.5 than under alkaline conditions, whereas the pore-forming ability of Cry1C decreases sharply above pH 8.5. The reduced activity of Cry1C at high pH correlates well with the fact that its toxicity for M. sexta is considerably weaker than that of Cry1Aa, Cry1Ab, and Cry1Ac. However, Cry1E, despite having a toxicity comparable to that of Cry1C, formed channels as efficiently as the Cry1A toxins at pH 10.5. These results strongly suggest that although pH can influence toxin activity, additional factors also modulate toxin potency in the insect midgut.  相似文献   

10.
The pore-forming domain of Bacillus thuringiensis insecticidal Cry toxins is formed of seven amphipathic α-helices. Because pore formation is thought to involve conformational changes within this domain, the possible role of its interhelical loops in this crucial step was investigated with Cry9Ca double mutants, which all share the previously characterized R164A mutation, using a combination of homology modeling, bioassays and electrophysiological measurements. The mutations either introduced, neutralized or reversed an electrical charge carried by a single residue of one of the domain I loops. The ability of the 28 Cry9Ca double mutants to depolarize the apical membrane of freshly isolated Manduca sexta larval midguts was tested in the presence of either midgut juice or a cocktail of protease inhibitors because these conditions had been shown earlier to greatly enhance pore formation by Cry9Ca and its R164A single-site mutant. Most mutants retained toxicity toward neonate larvae and a pore-forming ability in the electrophysiological assay, which were comparable to those of their parental toxin. In contrast, mutants F130D, L186D and V189D were very poorly toxic and practically inactive in vitro. On the other hand, mutant E129A depolarized the midgut membrane efficiently despite a considerably reduced toxicity, and mutant Q192E displayed a reduced depolarizing ability while conserving a near wild-type toxicity. These results suggest that the conditions found in the insect midgut, including high ionic strength, contribute to minimizing the influence of surface charges on the ability of Cry9Ca and probably other B. thuringiensis toxins to form pores within their target membrane.  相似文献   

11.
The biochemical mechanism of resistance to the Bacillus thuringiensis Cry1F toxin was studied in a laboratory-selected strain of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) showing more than 3000-fold resistance to Cry1F and limited cross resistance to other Cry toxins. Analyses of Cry1F binding to brush border membrane vesicles of midgut epithelia from susceptible and resistant larvae using ligand immunoblotting and Surface Plasmon Resonance (SPR) suggested that reduced binding of Cry1F to insect receptors was not associated with resistance. Additionally, no differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Considering these results along with previous evidence of relatively narrow spectrum of cross resistance and monogenic inheritance, the resistance mechanism in this Cry1F selected strain of O. nubilalis appears to be specific and may be distinct from previously identified resistance mechanisms reported in other Lepidoptera.  相似文献   

12.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when 125I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

13.
《Journal of Asia》1999,2(2):153-162
Pesticidal activity of different Bacillus thuringiensis (Bt) δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac and Cry2A, were investigated against Helicoverpa armigera infesting cotton crop worldwide. Cry1Ac toxin was found to be the most potent toxin towards H. armigera. All selected Bt toxins were found stable in vitro processing by midgut juice of H. armigera. Saturation and competition binding experiments were performed with iodine-125 labeled proteins and brush border membrane vesicles prepared from the midgut of H. armigera. The results show saturable, specific and high affinity of all toxins except for Cry2A. Both the toxins were bound with low binding affinity but with high binding site concentration. Heterologous competition experiments showed that Cry1Aa, Cry1Ab and Cry1Ac recognized or share the same binding site which is different from that of Cry2A. The data suggest that development of multiple toxin system in transgenic plants with toxin pyramiding, which recognize different binding sites, may be useful in the deployment strategies to decrease the rate of pest adaptation to Bt toxins in transgenic plants.  相似文献   

14.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

15.
Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.  相似文献   

16.
During sporulation, Bacillus thuringiensis produces crystalline inclusions comprised of a mixture of δ-endotoxins. Following ingestion by insect larvae, these inclusion proteins are solubilized, and the protoxins are converted to toxins. These bind specifically to receptors on the surfaces of midgut apical cells and are then incorporated into the membrane to form ion channels. The steps required for toxin insertion into the membrane and possible oligomerization to form a channel have been examined. When bound to vesicles from the midguts of Manduca sexta larvae, the Cry1Ac toxin was largely resistant to digestion with protease K. Only about 60 amino acids were removed from the Cry1Ac amino terminus, which included primarily helix α1. Following incubation of the Cry1Ab or Cry1Ac toxins with vesicles, the preparations were solubilized by relatively mild conditions, and the toxin antigens were analyzed by immunoblotting. In both cases, most of the toxin formed a large, antigenic aggregate of ca. 200 kDa. These toxin aggregates did not include the toxin receptor aminopeptidase N, but interactions with other vesicle components were not excluded. No oligomerization occurred when inactive toxins with mutations in amphipathic helices (α5) and known to insert into the membrane were tested. Active toxins with other mutations in this helix did form oligomers. There was one exception; a very active helix α5 mutant toxin bound very well to membranes, but no oligomers were detected. Toxins with mutations in the loop connecting helices α2 and α3, which affected the irreversible binding to vesicles, also did not oligomerize. There was a greater extent of oligomerization of the Cry1Ac toxin with vesicles from the Heliothis virescens midgut than with those from the M. sexta midgut, which correlated with observed differences in toxicity. Tight binding of virtually the entire toxin molecule to the membrane and the subsequent oligomerization are both important steps in toxicity.  相似文献   

17.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

18.
The effect of polypeptide denaturation of Bacillus thuringiensis Cry1A toxins or purified Manduca sexta 120-kDa aminopeptidase N on the specificities of their interactions was investigated. Ligand and dot blotting experiments were conducted with 125I-labeled Cry1Ac, Cry1Ac mutant 509QNR-AAA511 (QNR-AAA), or 120-kDa aminopeptidase N as the probe. Mutant QNR-AAA does not bind the N-acetylgalactosamine moiety on the 120-kDa aminopeptidase. Both 125I-Cry1Ac and 125I-QNR-AAA bound to 210- and 120-kDa proteins from M. sexta brush border membrane vesicles and purified 120-kDa aminopeptidase N on ligand blots. However, on dot blots 125I-QNR-AAA bound brush border vesicles but did not bind purified aminopeptidase except when aminopeptidase was denatured. In the reciprocal experiment, 125I-aminopeptidase bound Cry1Ac but did not bind QNR-AAA. 125I-aminopeptidase bound Cry1Ab to a limited extent but not the Cry1Ab domain I mutant Y153D or Cry1Ca. However, denatured 125I-aminopeptidase detected each Cry1A toxin and mutant but not Cry1Ca on dot blots. The same pattern of recognition occurred with native (nondenatured) 125I-aminopeptidase probe and denatured toxins as the targets. The broader pattern of toxin-binding protein interaction is probably due to peptide sequences being exposed upon denaturation. Putative Cry toxin-binding proteins identified by the ligand blot technique need to be investigated under native conditions early in the process of identifying binding proteins that may serve as functional toxin receptors.  相似文献   

19.
The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号