首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

2.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

3.
The microtubule-associated protein tau is hyperphosphorylated and forms neurofibrillary tangles in Alzheimer disease. Additionally caspase-cleaved tau is present in Alzheimer disease brains co-localized with fibrillar tau pathologies. To further understand the role of site-specific phosphorylation and caspase cleavage of tau in regulating its function, constructs of full-length tau (T4) or tau truncated at Asp421 (T4C3) to mimic caspase-3 cleavage with and without site-directed mutations that mimic phosphorylation at Thr231/Ser235, Ser396/Ser404, or at all four sites (Thr231/Ser235/Ser396/Ser404) were made and expressed in cells. Pseudophosphorylation of T4, but not T4C3, at either Thr231/Ser235 or Ser396/Ser404 increased its phosphorylation at Ser262 and Ser199. Pseudophosphorylation at Thr231/Ser235 impaired the microtubule binding of both T4 and T4C3. In contrast, pseudophosphorylation at Ser396/Ser404 only affected microtubule binding of T4C3 but did make T4 less soluble and more aggregated, which is consistent with the previous finding (Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J., and Binder, L. I. (2000) J. Cell Sci. 113, 3737-3745) that pseudophosphorylation at Ser396/Ser404 enhances tau polymerization in vitro. In situ T4C3 was more prevalent in the cytoskeletal and microtubule-associated fractions compared with T4, whereas purified recombinant T4 bound microtubules with higher affinity than did T4C3 in an in vitro assay. These data indicate the importance of cellular factors in regulating tau-microtubule interactions and that, in the cells, phosphorylation of T4 might impair its microtubule binding ability more than caspase cleavage. Treatment of cells with nocodazole revealed that pseudophosphorylation of T4 at both Thr231/Ser235 and Ser396/Ser404 diminished the ability of tau to protect against microtubule depolymerization, whereas with T4C3 only pseudophosphorylation at Ser396/Ser404 attenuated the ability of tau to stabilize the microtubules. These results show that site-specific phosphorylation and caspase cleavage of tau differentially affect the ability of tau to bind and stabilize microtubules and facilitate tau self-association.  相似文献   

4.
Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.  相似文献   

5.
Capsid assembly among the herpes-group viruses is coordinated by two related scaffolding proteins. In cytomegalovirus (CMV), the main scaffolding constituent is called the assembly protein precursor (pAP). Like its homologs in other herpesviruses, pAP is modified by proteolytic cleavage and phosphorylation. Cleavage is essential for capsid maturation and production of infectious virus, but the role of phosphorylation is undetermined. As a first step in evaluating the significance of this modification, we have identified the specific sites of phosphorylation in the simian CMV pAP. Two were established previously to be adjacent serines (Ser156 and Ser157) in a casein kinase II consensus sequence. The remaining two, identified here as Thr231 and Ser235, are within consensus sequences for glycogen synthase kinase 3 (GSK-3) and mitogen-activated protein kinase, respectively. Consistent with Thr231 being a GSK-3 substrate, its phosphorylation required a downstream "priming" phosphate (i.e., Ser235) and was reduced by a GSK-3-specific inhibitor. Phosphorylation of Ser235 converts pAP to an electrophoretically slower-mobility isoform, pAP*; subsequent phosphorylation of pAP* at Thr231 converts pAP* to a still-slower isoform, pAP**. The mobility shift to pAP* was mimicked by substituting an acidic amino acid for either Thr231 or Ser235, but the shift to pAP** required that both positions be phosphorylated. Glu did not substitute for pSer235 in promoting phosphorylation of Thr231. We suggest that phosphorylation of Thr231 and Ser235 causes charge-driven conformational changes in pAP, and we demonstrate that preventing these modifications alters interactions of pAP with itself and with major capsid protein, suggesting a functional significance.  相似文献   

6.
Rho-kinase and myosin phosphatase are implicated in the phosphorylation-state of myosin light chain downstream of Rho, which is thought to induce smooth muscle contraction and stress fibre formation in non-muscle cells. Here, we found that microtubule-associated proteins, Tau and MAP2, interacted with the myosin-binding subunit (MBS) of myosin phosphatase, and were the possible substrates of both Rho-kinase and myosin phosphatase. We determined the phosphorylation sites of Tau (Thr245, Thr377, Ser409) and MAP2 (Ser1796) by Rho-kinase. We also found that Rho-kinase phosphorylated Tau at Ser262 to some extent. Phosphorylation by Rho-kinase decreased the activity of Tau to promote microtubule assembly in vitro. Substitutions of Ala for Ser/Thr at the phosphorylation sites of Tau (Tau-AAA) did not affect the activity to promote microtubule assembly, while substitutions of Asp for Ser/Thr (Tau-DDD), which are expected to mimic the phosphorylation-state of Tau, slightly reduced the activity. When Tau, or mutated forms of Tau, were expressed in PC12 cells, followed by treatment with cytochalasin D, they promoted extension of the cell process in a cytochalasin-dependent manner. However, Tau-DDD showed the weaker activity in this capacity than wild-type Tau or Tau-AAA. These results suggest that the phosphorylation-state of these residues of Tau affects its activity both in vitro and in vivo. Thus, it is likely that the Rho-kinase/MBS pathway regulates not only the actin-myosin system but also microtubule dynamics.  相似文献   

7.
Abnormal hyperphosphorylation of the microtubule-associated protein Tau is a hallmark of Alzheimer disease and related diseases called tauopathies. As yet, the exact mechanism by which this pathology causes neurodegeneration is not understood. The present study provides direct evidence that Tau abnormal hyperphosphorylation causes its aggregation, breakdown of the microtubule network, and cell death and identifies phosphorylation sites involved in neurotoxicity. We generated pseudophosphorylated Tau proteins by mutating Ser/Thr to Glu and, as controls, to Ala. These mutations involved one, two, or three pathological phosphorylation sites by site-directed mutagenesis using as backbones the wild type or FTDP-17 mutant R406W Tau. Pseudophosphorylated and corresponding control Tau proteins were expressed transiently in PC12 and CHO cells. We found that a single phosphorylation site alone had little influence on the biological activity of Tau, except Thr212, which, upon mutation to Glu in the R406W background, induced Tau aggregation in cells, suggesting phosphorylation at this site along with a modification on the C-terminal of the protein facilitates self-assembly of Tau. The expression of R406W Tau pseudophosphorylated at Thr212, Thr231, and Ser262 triggered caspase-3 activation in as much as 85% of the transfected cells, whereas the corresponding value for wild type pseudophosphorylated Tau was 30%. Cells transfected with pseudophosphorylated Tau became TUNEL-positive.  相似文献   

8.
The microtubule-associated protein Tau (τ) regulates the assembly and disassembly of neuronal microtubules. In Alzheimer’s disease (AD), τ becomes hyperphosphorylated and aggregates to form paired helical filaments (PHF). As the phosphorylation status of normal and biopsy-derived τ versus PHF-τ is still unclear, there is need for antibodies recognizing a distinct phosphorylation pattern without cross-reactivity. Thus, we studied seven phosphorylation-dependent antibodies directed towards phosphoserine and phosphothreonine residues in positions 212, 214, 217, 231, 396, 400, and 404 of human τ (numbering according to the longest splicing-form with 441 residues). In an immunosorbent assay only one antibody showed a significant cross-reactivity towards the unmodified sequence. All other antibodies recognized only the phosphorylated sequences at lower peptide concentrations typically applied in immunosorbent assays. However, the binding of antibodies directed towards Thr212, Thr217, and Ser400 were reduced when the nearby Ser214, Thr212 or Ser396, respectively, were simultaneously phosphorylated. The phosphate specificity was confirmed on the protein level using bovine τ in its native phosphorylation status as well as τ dephosphorylated by phosphatases. Immunoblot analyses after two-dimensional gel electrophoreses also indicated that the pAbs recognized specifically the phosphorylated τ-versions. This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) (grants 2222/2-1 and 2222/3-1) as well as the European Union and the Free State Saxony (EFRE) to R.H.  相似文献   

9.
Ikeda Y  Ishiguro K  Fujita SC 《FEBS letters》2007,581(5):891-897
Tau is reversibly hyperphosphorylated in the mouse brain by starvation or cold water swimming. Here, we report tau phosphorylation in the hippocampus of normal mouse after ether anesthesia, known to trigger typical stress reactions. Robust phosphorylation of tau was observed immediately and 10min after ether vapor exposure at Ser202/Thr205 and Thr231/Ser235, sites typically phosphorylated in Alzheimer brains. The phosphorylation levels returned to baseline by 1h. The most conspicuous and consistent change in the protein kinases studied was the inactivating phosphorylation of Ser9 of TPKI/GSK3beta in close correspondence with tau phosphorylation. These findings show that tau phosphorylation is a rapid physiological process integral to stress response system, and suggest involvement therein of TPKI/GSK3beta.  相似文献   

10.
Deregulation of Tau phosphorylation is a key question in Alzheimer disease pathogenesis. Recently, Pin1, a peptidylprolyl cis/trans-isomerase, was proposed to be a new modulator in Tau phosphorylation in Alzheimer disease. In vitro, Pin1 was reported to present a high affinity for both Thr(P)-231, a crucial site for microtubule binding, and Thr(P)-212. In fact, Pin1 may facilitate Thr(P)-231 dephosphorylation by protein phosphatase 2A through trans isomerization of the Thr(P)-Pro peptide bound. However, whether Pin1 binding to Tau leads to isomerization of a single site or of multiple Ser/Thr(P)-Pro sites in vivo is still unknown. In the present study, Pin1 involvement was investigated in stress-induced Tau dephosphorylation with protein phosphatase 2A activation. Both oxidative (H2O2) and heat stresses induced hypophosphorylation of a large set of phospho-Tau epitopes in primary cortical cultures. In both cases, juglone, a Pin1 pharmacological inhibitor, partially prevented dephosphorylation of Tau at Thr-231 among a set of phosphoepitopes tested. Moreover, Pin1 is physiologically found in neurons and partially co-localized with Tau. Furthermore, in Pin1-deficient neuronal primary cultures, H2O2 stress-induced Tau dephosphorylation at Thr(P)-231 was significantly lower than in wild type neurons. Finally, Pin1 transfection in Pin1-deficient neuronal cell cultures allowed for rescuing the effect of H2O2 stress-induced Tau dephosphorylation, whereas a Pin1 catalytic mutant did not. This is the first demonstration of an in situ Pin1 involvement in a differential Tau dephosphorylation on the full-length multiphosphorylated substrate.  相似文献   

11.
Tau is a multiply phosphorylated protein that is essential for the development and maintenance of the nervous system. Errors in Tau action are associated with Alzheimer disease and related dementias. A huge literature has led to the widely held notion that aberrant Tau hyperphosphorylation is central to these disorders. Unfortunately, our mechanistic understanding of the functional effects of combinatorial Tau phosphorylation remains minimal. Here, we generated four singly pseudophosphorylated Tau proteins (at Thr(231), Ser(262), Ser(396), and Ser(404)) and four doubly pseudophosphorylated Tau proteins using the same sites. Each Tau preparation was assayed for its abilities to promote microtubule assembly and to regulate microtubule dynamic instability in vitro. All four singly pseudophosphorylated Tau proteins exhibited loss-of-function effects. In marked contrast to the expectation that doubly pseudophosphorylated Tau would be less functional than either of its corresponding singly pseudophosphorylated forms, all of the doubly pseudophosphorylated Tau proteins possessed enhanced microtubule assembly activity and were more potent at regulating dynamic instability than their compromised singly pseudophosphorylated counterparts. Thus, the effects of multiple pseudophosphorylations were not simply the sum of the effects of the constituent single pseudophosphorylations; rather, they were generally opposite to the effects of singly pseudophosphorylated Tau. Further, despite being pseudophosphorylated at different sites, the four singly pseduophosphorylated Tau proteins often functioned similarly, as did the four doubly pseudophosphorylated proteins. These data lead us to reassess the conventional view of combinatorial phosphorylation in normal and pathological Tau action. They may also be relevant to the issue of combinatorial phosphorylation as a general regulatory mechanism.  相似文献   

12.
tau蛋白是神经细胞中主要的微管相关蛋白, 它的异常过度磷酸化被认为是阿尔茨海默病 (AD) 致病过程中的关键因素. 由于法律、社会、家庭等诸多因素使得获取的人脑组织标本常常在死亡后2~3 h以上,因此了解死亡不同时间后tau蛋白磷酸化的改变,对研究tau蛋白的功能及在AD致病过程中作用显得十分重要. 用位点特异的、磷酸化依赖的抗tau蛋白抗体检测正常大鼠脑中tau蛋白磷酸化程度及死亡后其磷酸化的变化情况,再用非同位素的点印迹技术测定鼠脑中tau蛋白激酶、磷酸酶在不同温度下的活性. 结果发现,正常鼠脑中tau蛋白除了Ser262,Ser409,Ser422外,在Thr181,Ser199,Ser202,Thr205,Thr212,Ser214,Thr217,Ser396和Ser404存在不同程度的磷酸化,并且在死亡后3 h,出现tau的多位点的去磷酸化及tau蛋白迁移加快,6 h后更为明显,但tau蛋白水平即使在大鼠死亡后6 h,仍未见有明显的改变. 用点印迹测定蛋白激酶和磷酸酶活性结果显示,tau蛋白激酶、磷酸酶活性均有温度依赖性降低,在25℃时激酶活性降低远大于磷酸酶活性的降低,tau蛋白在死亡后的快速去磷酸化与相对高的磷酸酶作用有关.  相似文献   

13.
The interaction between the neuronal Tau protein and the Pin1 prolyl cis/trans-isomerase is dependent on the phosphorylation state of the former. The interaction site was mapped to the unique phospho-Thr231-Pro232 motif, despite the presence of many other Thr/Ser-Pro phosphorylation sites in Tau and structural evidence that the interaction site does not significantly extend beyond those very two residues. We demonstrate here by NMR and fluorescence mapping that the Alzheimer's disease specific epitope centered around the phospho-Thr212-Pro213 motif is also an interaction site, and that the sole phospho-Thr-Pro motif is already sufficient for interaction. Because a detectable fraction of the Pro213 amide bond in the peptide centered around the phospho-Thr212-Pro213 motif is in the cis conformation, catalysis of the isomerization by the catalytic domain of Pin1 could be investigated via NMR spectroscopy.  相似文献   

14.
Microtubule associated protein tau, which is expressed in six alternatively spliced molecular isoforms in human brain, is abnormally hyperphosphorylated in Alzheimer disease and related tauopathies. Here, we show (i) that GSK-3alpha and neither GSK-3beta nor cdk5 can phosphorylate tau at Ser262 and phosphorylation at Ser235 by cdk5 primes phosphorylation at Thr231 by GSK-3alpha/beta; (ii) that tau isoforms with two N-terminal inserts (tau4L, tau3L) are phosphorylated by cdk5 plus GSK-3 at Thr231 markedly more than isoforms lacking these inserts (tau4, tau3); and (iii) that Thr231 is phosphorylated approximately 50% more in free tau than in microtubule-bound tau, and the phosphorylation at this site results in the dissociation of tau from microtubules. These findings suggest that the phosphorylation of tau at Thr231 and Ser262 by cdk5 plus GSK-3, which inhibits its normal biological activity, is regulated both by its amino terminal inserts and its physical state.  相似文献   

15.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   

16.
Many Ser/Thr protein kinases are activated by autophosphorylation, but the mechanism of this process has not been defined. We determined the crystal structure of a mutant of the Ser/Thr kinase domain (KD) of the mycobacterial sensor kinase PknB in complex with an ATP competitive inhibitor and discovered features consistent with an activation complex. The complex formed an asymmetric dimer, with the G helix and the ordered activation loop of one KD in contact with the G helix of the other. The activation loop of this putative ‘substrate’ KD was disordered, with the ends positioned at the entrance to the partner KD active site. Single amino‐acid substitutions in the G‐helix interface reduced activation‐loop phosphorylation, and multiple replacements abolished KD phosphorylation and kinase activation. Phosphorylation of an inactive mutant KD was reduced by G‐helix substitutions in both active and inactive KDs, as predicted by the idea that the asymmetric dimer mimics a trans‐autophosphorylation complex. These results support a model in which a structurally and functionally asymmetric, ‘front‐to‐front’ association mediates autophosphorylation of PknB and homologous kinases.  相似文献   

17.
The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions.  相似文献   

18.
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, argyrophilic grain disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Previous work has established that the phosphorylation-dependent anti-tau antibody AT100 is a specific marker for filamentous tau in adult human brain. Here we have identified protein kinases that generate the AT100 epitope in vitro and have used them, in conjunction with site-directed mutagenesis of tau, to map the epitope. We show that the sequential phosphorylation of recombinant tau by cAMP-dependent protein kinase (PKA) and the stress-activated protein kinases SAPK4/p38delta or JNK2 generated the AT100 epitope and that this required phosphorylation of T212, S214 and T217. Tau protein from newborn, but not adult, mouse brain was weakly labelled by AT100. Phosphorylation by PKA and SAPK4/p38delta abolished the ability of tau to promote microtubule assembly, but failed to influence significantly the heparin-induced assembly of tau into filaments.  相似文献   

19.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

20.
Numerous enzymes hyperphosphorylate Tau in vivo, leading to the formation of neurofibrillary tangles (NFTs) in the neurons of Alzheimer's disease (AD). Compared with age-matched normal controls, we demonstrated here that the protein levels of WW domain-containing oxidoreductase WOX1 (also known as WWOX or FOR), its Tyr33-phosphorylated form, and WOX2 were significantly down-regulated in the neurons of AD hippocampi. Remarkably knock-down of WOX1 expression by small interfering RNA in neuroblastoma SK-N-SH cells spontaneously induced Tau phosphorylation at Thr212/Thr231 and Ser515/Ser516, enhanced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and ERK, and enhanced NFT formation. Also an increased binding of phospho-GSK-3beta with phospho-Tau was observed in these WOX1 knock-down cells. In comparison, increased phosphorylation of Tau, GSK-3beta, and ERK, as well as NFT formation, was observed in the AD hippocampi. Activation of JNK1 by anisomycin further increased Tau phosphorylation, and SP600125 (a JNK inhibitor) and PD-98059 (an MEK1/2 inhibitor) blocked Tau phosphorylation and NFT formation in these WOX1 knock-down cells. Ectopic or endogenous WOX1 colocalized with Tau, JNK1, and GSK-3beta in neurons and cultured cells. 17Beta-estradiol, a neuronal protective hormone, increased the binding of WOX1 and GSK-3beta with Tau. Mapping analysis showed that WOX1 bound Tau via its COOH-terminal short-chain alcohol dehydrogenase/reductase domain. Together WOX1 binds Tau via its short-chain alcohol dehydrogenase/reductase domain and is likely to play a critical role in regulating Tau hyperphosphorylation and NFT formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号