首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Neglected tropical diseases, including diseases caused by trypanosomatid parasites such as Trypanosoma brucei, cost tens of millions of disability-adjusted life-years annually. As the current treatments for African trypanosomiasis and other similar infections are limited, new therapeutics are urgently needed. RNA Editing Ligase 1 (REL1), a protein unique to trypanosomes and other kinetoplastids, was identified recently as a potential drug target.

Methodology/Principal Findings

Motivated by the urgent need for novel trypanocidal therapeutics, we use an ensemble-based virtual-screening approach to discover new naphthalene-based TbREL1 inhibitors. The predicted binding modes of the active compounds are evaluated within the context of the flexible receptor model and combined with computational fragment mapping to determine the most likely binding mechanisms. Ultimately, four new low-micromolar inhibitors are presented. Three of the four compounds may bind to a newly revealed cleft that represents a putative druggable site not evident in any crystal structure.

Conclusions/Significance

Pending additional optimization, the compounds presented here may serve as precursors for future novel therapies useful in the fight against several trypanosomatid pathogens, including human African trypanosomiasis, a devastating disease that afflicts the vulnerable patient populations of sub-Saharan Africa.  相似文献   

2.

Background

There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp.

Methodology/Principal Findings

In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10–12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites.

Conclusions/Significance

Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.  相似文献   

3.

Background

Trypanosomiasis is regarded as a constraint on livestock production in Western Kenya where the responsibility for tsetse and trypanosomiasis control has increasingly shifted from the state to the individual livestock owner. To assess the sustainability of these localised control efforts, this study investigates biological and management risk factors associated with trypanosome infections detected by polymerase chain reaction (PCR), in a range of domestic livestock at the local scale in Busia, Kenya. Busia District also remains endemic for human sleeping sickness with sporadic cases of sleeping sickness reported.

Results

In total, trypanosome infections were detected in 11.9% (329) out of the 2773 livestock sampled in Busia District. Multivariable logistic regression revealed that host species and cattle age affected overall trypanosome infection, with significantly increased odds of infection for cattle older than 18 months, and significantly lower odds of infection in pigs and small ruminants. Different grazing and watering management practices did not affect the odds of trypanosome infection, adjusted by host species. Neither anaemia nor condition score significantly affected the odds of trypanosome infection in cattle. Human infective Trypanosoma brucei rhodesiense were detected in 21.5% of animals infected with T. brucei s.l. (29/135) amounting to 1% (29/2773) of all sampled livestock, with significantly higher odds of T. brucei rhodesiense infections in T. brucei s.l. infected pigs (OR = 4.3, 95%CI 1.5-12.0) than in T. brucei s.l. infected cattle or small ruminants.

Conclusions

Although cattle are the dominant reservoir of trypanosome infection it is unlikely that targeted treatment of only visibly diseased cattle will achieve sustainable interruption of transmission for either animal infective or zoonotic human infective trypanosomiasis, since most infections were detected in cattle that did not exhibit classical clinical signs of trypanosomiasis. Pigs were also found to be reservoirs of infection for T. b. rhodesiense and present a risk to local communities.  相似文献   

4.

Background and Methodology

Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach.

Principal Findings

A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity.

Conclusions and Significance

Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands.  相似文献   

5.

Background

In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the >70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein.

Methods/Findings

TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL.

Conclusions

Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and hence mitosis, in trypanosomes. TbRHP is a partner for TbRACK and an OCRL-related trypanosome Rho-GAP.  相似文献   

6.

Background

Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.

Methodology/Principal Findings

The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins.

Conclusions/Significance

Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.  相似文献   

7.

Background

At present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We therefore aimed at identifying peptides that mimic epitopes, hence called “mimotopes,” specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests.

Methodology/Principal Findings

A Ph.D.-12 peptide phage display library was screened with polyclonal antibodies from patient sera, previously affinity purified on VSG LiTat 1.3 or LiTat 1.5. The peptide sequences were derived from the DNA sequence of the selected phages and synthesised as biotinylated peptides. Respectively, eighteen and twenty different mimotopes were identified for VSG LiTat 1.3 and LiTat 1.5, of which six and five were retained for assessment of their diagnostic performance. Based on alignment of the peptide sequences on the original protein sequence of VSG LiTat 1.3 and 1.5, three additional peptides were synthesised. We evaluated the diagnostic performance of the synthetic peptides in indirect ELISA with 102 sera from HAT patients and 102 endemic negative controls. All mimotopes had areas under the curve (AUCs) of ≥0.85, indicating their diagnostic potential. One peptide corresponding to the VSG LiTat 1.3 protein sequence also had an AUC of ≥0.85, while the peptide based on the sequence of VSG LiTat 1.5 had an AUC of only 0.79.

Conclusions/Significance

We delivered the proof of principle that mimotopes for T.b. gambiense VSGs, with diagnostic potential, can be selected by phage display using polyclonal human antibodies.  相似文献   

8.

Background

Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear.

Methods/Principal Findings

We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (P K+/P Cl−∼0.31), while the other two types of channels are slightly selective for cations (P K+/P Cl− ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel''s pore.

Conclusions/Significance

These results indicate that the membrane of glycosomes apparently contains several types of pore-forming channels connecting the glycosomal lumen and the cytosol.  相似文献   

9.

Background

The 14-3-3 proteins are structurally conserved throughout eukaryotes and participate in protein kinase signaling. All 14-3-3 proteins are known to bind to evolutionally conserved phosphoserine-containing motifs (modes 1 and/or 2) with high affinity. In Trypanosoma brucei, 14-3-3I and II play pivotal roles in motility, cytokinesis and the cell cycle. However, none of the T. brucei 14-3-3 binding proteins have previously been documented.

Methodology/Principal Findings

Initially we showed that T. brucei 14-3-3 proteins exhibit far lower affinity to those peptides containing RSxpSxP (mode 1) and RxY/FxpSxP (mode 2) (where x is any amino acid residue and pS is phosphoserine) than human 14-3-3 proteins, demonstrating the atypical target recognition by T. brucei 14-3-3 proteins. We found that the putative T. brucei protein phosphatase 2C (PP2c) binds to T. brucei 14-3-3 proteins utilizing its mode 3 motif (–pS/pTx1-2-COOH, where x is not Pro). We constructed eight chimeric PP2c proteins replacing its authentic mode 3 motif with potential mode 3 sequences found in Trypanosoma brucei genome database, and tested their binding. As a result, T. brucei 14-3-3 proteins interacted with three out of eight chimeric proteins including two with high affinity. Importantly, T. brucei 14-3-3 proteins co-immunoprecipitated with an uncharacterized full-length protein containing identified high-affinity mode 3 motif, suggesting that both proteins form a complex in vivo. In addition, a synthetic peptide derived from this mode 3 motif binds to T. brucei 14-3-3 proteins with high affinity.

Conclusion/Significance

Because of the atypical target recognition of T. brucei 14-3-3 proteins, no 14-3-3-binding proteins have been successfully identified in T. brucei until now whereas over 200 human 14-3-3-binding proteins have been identified. This report describes the first discovery of the T. brucei 14-3-3-binding proteins and their binding motifs. The high-affinity phosphopeptide will be a powerful tool to identify novel T. brucei 14-3-3-binding proteins.  相似文献   

10.
11.

Objectives

There is an urgent need to develop a safe, effective, orally active, and inexpensive therapy for African trypanosomiasis due to the drawbacks of current drugs. Selective tubulin inhibitors have the potential to be promising drug candidates for the treatment of this disease, which is based on the tubulin protein structural difference between mammalian and trypanosome cells. We propose to identify novel tubulin inhibitors from a compound library developed based on the lead compounds that selectively target trypanosomiasis.

Methods

We used Trypanosoma brucei brucei as the parasite model, and human normal kidney cells and mouse microphage cells as the host model. Growth rates of both trypanosomes and mammalian cells were determined as a means to screen compounds that selectively inhibit the proliferation of parasites. Furthermore, we examined the cell cycle profile of the parasite and compared tubulin polymerization dynamics before and after the treatment using identified compounds. Last, in vivo anti-parasite activities of these compounds were determined in T. brucei-infected mice.

Results

Three compounds were selected that are 100 fold more effective against the growth of T. brucei cells than mammalian cells. These compounds caused cell cycle progression defects in T. brucei cells. Western analyses indicated that these compounds decreased tubulin polymerization in T. brucei cells. The in vivo investigation revealed that these compounds, when admitted orally, inhibited T. brucei cell proliferation in mouse blood. However, they were not potent enough to clear up the infection completely.

Conclusions

These compounds are promising lead compounds as orally active agents for drug development of anti-trypanosome agents. A more detail structure activity relationship (SAR) was summarized that will be used to guide future lead optimization to improve the selectivity and potency of the current compounds.  相似文献   

12.

Background

Diagnosis of Trypanosoma cruzi infection by direct pathogen detection is complicated by the low parasite burden in subjects persistently infected with this agent of human Chagas disease. Determination of infection status by serological analysis has also been faulty, largely due to the lack of well-characterized parasite reagents for the detection of anti-parasite antibodies.

Methods

In this study, we screened more than 400 recombinant proteins of T. cruzi, including randomly selected and those known to be highly expressed in the parasite stages present in mammalian hosts, for the ability to detect anti-parasite antibodies in the sera of subjects with confirmed or suspected T. cruzi infection.

Findings

A set of 16 protein groups were identified and incorporated into a multiplex bead array format which detected 100% of >100 confirmed positive sera and also documented consistent, strong and broad responses in samples undetected or discordant using conventional serologic tests. Each serum had a distinct but highly stable reaction pattern. This diagnostic panel was also useful for monitoring drug treatment efficacy in chronic Chagas disease.

Conclusions

These results substantially extend the variety and quality of diagnostic targets for Chagas disease and offer a useful tool for determining treatment success or failure.  相似文献   

13.

Background

The current antibody detection tests for the diagnosis of gambiense human African trypanosomiasis (HAT) are based on native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. These native VSGs are difficult to produce, and contain non-specific epitopes that may cause cross-reactions. We aimed to identify mimotopic peptides for epitopes of T.b. gambiense VSGs that, when produced synthetically, can replace the native proteins in antibody detection tests.

Methodology/Principal Findings

PhD.-12 and PhD.-C7C phage display peptide libraries were screened with mouse monoclonal antibodies against the predominant VSGs LiTat 1.3 and LiTat 1.5 of T.b. gambiense. Thirty seven different peptide sequences corresponding to a linear LiTat 1.5 VSG epitope and 17 sequences corresponding to a discontinuous LiTat 1.3 VSG epitope were identified. Seventeen of 22 synthetic peptides inhibited the binding of their homologous monoclonal to VSG LiTat 1.5 or LiTat 1.3. Binding of these monoclonal antibodies to respectively six and three synthetic mimotopic peptides of LiTat 1.5 and LiTat 1.3 was significantly inhibited by HAT sera (p<0.05).

Conclusions/Significance

We successfully identified peptides that mimic epitopes on the native trypanosomal VSGs LiTat 1.5 and LiTat 1.3. These mimotopes might have potential for the diagnosis of human African trypanosomiasis but require further evaluation and testing with a large panel of HAT positive and negative sera.  相似文献   

14.

Background

In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.

Methodology/Principal findings

By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.

Conclusion

A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.  相似文献   

15.

Background

The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.

Methodology/Principal Findings

Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.

Conclusions/Significance

The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.  相似文献   

16.

Background

Molecular methods have great potential for sensitive parasite detection in the diagnosis of human African trypanosomiasis (HAT), but the requirements in terms of laboratory infrastructure limit their use to reference centres. A recently developed assay detects the Trypanozoon repetitive insertion mobile element (RIME) DNA under isothermal amplification conditions and has been transformed into a ready-to-use kit format, the Loopamp Trypanosoma brucei. In this study, we have evaluated the diagnostic performance of the Loopamp Trypanosoma brucei assay (hereafter called LAMP) in confirmed T.b. gambiense HAT patients, HAT suspects and healthy endemic controls from the Democratic Republic of the Congo (DRC).

Methodology/Principal findings

142 T.b. gambiense HAT patients, 111 healthy endemic controls and 97 HAT suspects with unconfirmed status were included in this retrospective evaluation. Reference standard tests were parasite detection in blood, lymph or cerebrospinal fluid. Archived DNA from blood of all study participants was analysed in duplicate with LAMP. Sensitivity of LAMP in parasitologically confirmed cases was 87.3% (95% CI 80.9–91.8%) in the first run and 93.0% (95% CI 87.5–96.1%) in the second run. Specificity in healthy controls was 92.8% (95% CI 86.4–96.3%) in the first run and 96.4% (95% CI 91.1–98.6%) in the second run. Reproducibility was excellent with a kappa value of 0.81.

Conclusions/Significance

In this laboratory-based study, the Loopamp Trypanosoma brucei Detection Kit showed good diagnostic accuracy and excellent reproducibility. Further studies are needed to assess the feasibility of its routine use for diagnosis of HAT under field conditions.  相似文献   

17.

Background

The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens.

Methodology/Principal Findings

We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device.

Conclusions/Significance

Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use.  相似文献   

18.

Background

Screening tests for gambiense sleeping sickness, such as the CATT/T. b. gambiense and a recently developed lateral flow tests, are hitherto based on native variant surface glycoproteins (VSGs), namely LiTat 1.3 and LiTat 1.5, purified from highly virulent trypanosome strains grown in rodents.

Methodology/Principal Findings

We have expressed SUMO (small ubiquitin-like modifier) fusion proteins of the immunogenic N-terminal part of these antigens in the yeast Pichia pastoris. The secreted recombinant proteins were affinity purified with yields up to 10 mg per liter cell culture.

Conclusions/Significance

The diagnostic potential of each separate antigen and a mixture of both antigens was confirmed in ELISA on sera from 88 HAT patients and 74 endemic non-HAT controls. Replacement of native antigens in the screening tests for sleeping sickness by recombinant proteins will eliminate both the infection risk for the laboratory staff during antigen production and the need for laboratory animals. Upscaling production of recombinant antigens, e.g. in biofermentors, is straightforward thus leading to improved standardisation of antigen production and reduced production costs, which on their turn will increase the availability and affordability of the diagnostic tests needed for the elimination of gambiense HAT.  相似文献   

19.

Background

Human African trypanosomiasis is caused by infection with parasites of the Trypanosoma brucei species complex, and threatens over 70 million people in sub-Saharan Africa. Development of new drugs is hampered by the limitations of current rodent models, particularly for stage II infections, which occur once parasites have accessed the CNS. Bioluminescence imaging of pathogens expressing firefly luciferase (emission maximum 562 nm) has been adopted in a number of in vivo models of disease to monitor dissemination, drug-treatment and the role of immune responses. However, lack of sensitivity in detecting deep tissue bioluminescence at wavelengths below 600 nm has restricted the wide-spread use of in vivo imaging to investigate infections with T. brucei and other trypanosomatids.

Methodology/Principal findings

Here, we report a system that allows the detection of fewer than 100 bioluminescent T. brucei parasites in a murine model. As a reporter, we used a codon-optimised red-shifted Photinus pyralis luciferase (PpyRE9H) with a peak emission of 617 nm. Maximal expression was obtained following targeted integration of the gene, flanked by an upstream 5′-variant surface glycoprotein untranslated region (UTR) and a downstream 3′-tubulin UTR, into a T. brucei ribosomal DNA locus. Expression was stable in the absence of selective drug for at least 3 months and was not associated with detectable phenotypic changes. Parasite dissemination and drug efficacy could be monitored in real time, and brain infections were readily detectable. The level of sensitivity in vivo was significantly greater than achievable with a yellow firefly luciferase reporter.

Conclusions/Significance

The optimised bioluminescent reporter line described here will significantly enhance the application of in vivo imaging to study stage II African trypanosomiasis in murine models. The greatly increased sensitivity provides a new framework for investigating host-parasite relationships, particularly in the context of CNS infections. It should be ideally suited to drug evaluation programmes.  相似文献   

20.

Background

The importance of wildlife as reservoirs of African trypanosomes pathogenic to man and livestock is well recognised. While new species of trypanosomes and their variants have been identified in tsetse populations, our knowledge of trypanosome species that are circulating in wildlife populations and their genetic diversity is limited.

Methodology/Principal Findings

Molecular phylogenetic methods were used to examine the genetic diversity and species composition of trypanosomes circulating in wildlife from two ecosystems that exhibit high host species diversity: the Serengeti in Tanzania and the Luangwa Valley in Zambia. Phylogenetic relationships were assessed by alignment of partial 18S, 5.8S and 28S trypanosomal nuclear ribosomal DNA array sequences within the Trypanosomatidae and using ITS1, 5.8S and ITS2 for more detailed analysis of the T. vivax clade. In addition to Trypanosoma brucei, T. congolense, T. simiae, T. simiae (Tsavo), T. godfreyi and T. theileri, three variants of T. vivax were identified from three different wildlife species within one ecosystem, including sequences from trypanosomes from a giraffe and a waterbuck that differed from all published sequences and from each other, and did not amplify with conventional primers for T. vivax.

Conclusions/Significance

Wildlife carries a wide range of trypanosome species. The failure of the diverse T. vivax in this study to amplify with conventional primers suggests that T. vivax may have been under-diagnosed in Tanzania. Since conventional species-specific primers may not amplify all trypanosomes of interest, the use of ITS PCR primers followed by sequencing is a valuable approach to investigate diversity of trypanosome infections in wildlife; amplification of sequences outside the T. brucei clade raises concerns regarding ITS primer specificity for wildlife samples if sequence confirmation is not also undertaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号