首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.  相似文献   

2.
Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na+ and L-type Ca2+ channels and GABAA receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABAA receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABAA α1β3γ2S receptor currents in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 μM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABAA receptor currents and suppressed allosteric modulation by flunitrazepam at α1β3γ2S receptors. All effects were independent of the presence of a γ2S subunit in the GABAA receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABAA receptor through changes in lipid bilayer elasticity.  相似文献   

3.
γ-Aminobutyric-acid receptor (GABAA-R), a membrane intrinsic protein, is activated by GABA and modulated by a wide variety of recognized drugs. GABAA-R is also target for several insecticides which act by recognition of a non-competitive blocking site. Mentha oil is rich in several ketones with established activity against various insects/pests. Considering that mint ketones are highly lipophilic, their action mechanism could involve, at least in part, a non-specific receptor modulation by interacting with the surrounding lipids. In the present work, we studied in detail the effect on membranes of five cyclic ketones present in mint plants, with demonstrated insecticide and gabaergic activity. Particularly, we have explored their effect on the organization and dynamics of the membrane, by using Molecular Dynamics (MD) Simulation studies in a bilayer model of DPPC. We performed free diffusion MD and obtained spatially resolved free energy profiles of ketones partition into bilayers based on umbrella sampling. The most favored location of ketones in the membrane corresponded to the lower region of the carbonyl groups. Both hydrocarbon chains were slightly affected by the presence of ketones, presenting an ordering effect for the methylene groups closer to the carbonyl. MD simulations results were also contrasted with experimental data from fluorescence anisotropy studies which evaluate changes in membrane fluidity. In agreement, these assays indicated that the presence of ketones between lipid molecules induced an enhancement of the intermolecular interaction, increasing the molecular order throughout the bilayer thickness.  相似文献   

4.
Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A2-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs.  相似文献   

5.
In the eye lens, the oxygen partial pressure is very low and the cholesterol (Chol) content in cell membranes is very high. Disturbance of these quantities results in cataract development. In human lens membranes, both bulk phospholipid-Chol domains and the pure Chol bilayer domains (CBDs) were experimentally detected. It is hypothesized that the CBD constitutes a significant barrier to oxygen transport into the lens. Transmembrane profiles of the oxygen diffusion-concentration product, obtained with electron paramagnetic resonance spin-labeling methods, allow evaluation of the oxygen permeability (PM) of phospholipid membranes but not the CBD. Molecular dynamics simulation can independently provide components of the product across any bilayer domain, thus allowing evaluation of the PM across the CBD. Therefore, to test the hypothesis, MD simulation was used. Three bilayers containing palmitoyl-oleoyl-phosphorylcholine (POPC) and Chol were built. The pure Chol bilayer modeled the CBD, the 1:1 POPC-Chol bilayer modeled the bulk membrane in which the CBD is embedded, and the POPC bilayer was a reference. To each model, 200 oxygen molecules were added. After equilibration, the oxygen concentration and diffusion profiles were calculated for each model and multiplied by each other. From the respective product profiles, the PM of each bilayer was calculated. Favorable comparison with experimental data available only for the POPC and POPC-Chol bilayers validated these bilayer models and allowed the conclusion that oxygen permeation across the CBD is ~ 10 smaller than across the bulk membrane, supporting the hypothesis that the CBD is a barrier to oxygen transport into the eye lens.  相似文献   

6.
Melatonin is a hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. We studied the interaction of melatonin with model membranes made of dimyristoylphosphatidylcholine (DMPC) at melatonin concentrations ranging from 0.5 mol% to 30 mol%. From 2-dimensional X-ray diffraction measurements, we find that melatonin induces a re-ordering of the lipid membrane that is strongly dependent on the melatonin concentration. At low melatonin concentrations, we observe the presence of melatonin-enriched patches in the membrane, which are significantly thinner than the lipid bilayer. The melatonin molecules were found to align parallel to the lipid tails in these patches. At high melatonin concentrations of 30 mol%, we observe a highly ordered melatonin structure that is uniform throughout the membrane, where the melatonin molecules align parallel to the bilayers and one melatonin molecule associates with 2 lipid molecules. Understanding the organization and interactions of melatonin in membranes, and how these are dependent on the concentration, may shed light into its anti-amyloidogenic, antioxidative and photoprotective properties and help develop a structural basis for these properties.  相似文献   

7.
Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A2 (PLA2) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA2 toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and d-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA2 and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA2 increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA2 preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA2-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA2 mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA2.  相似文献   

8.
The functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18 kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~ 10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51 Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug–membrane interactions may contribute to the apparent affinity of TSPO ligands.  相似文献   

9.
The labelling reagent 2-[18F]fluoroethylazide was used in a traceless Staudinger ligation. This reaction was employed to obtain the GABAA receptor binding 6-benzyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2-[18F]fluoroethyl) amide. The radiotracer was prepared with a non-decay corrected radiochemical yield of 7%, a radiochemical purity >95% and a specific radioactivity of 0.9 GBq/μmol. The compound showed low brain penetration in normal rats. A series of fluoroalkyl 4-quinolone analogues with nanomolar to sub-nanomolar affinity for the GABAA receptor has been prepared as well.  相似文献   

10.
The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at − 50 mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60 mV at 50 μM, while Rose Bengal, phloxine B and erythrosin at 2.5 μM reduce the membrane dipole potential by 120, 80 and 50 mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.  相似文献   

11.
Sporidesmin, a mycotoxin fromPithomyces chartarum is a hydrophobic molecule. It can therefore be easily incorporated in the cell membrane, where it is likely to cause changes in the bilayer organization and the properties of membrane proteins. In order to understand the redox behaviour of sporidesmin in a hydrophobic environment, we have investigated the effects of oxidized and reduced sporidesmin on the phase transition properties of bilayers and on the susceptibility of bilayers to pancreatic phospholipase A2 (PLA2). The changes induced by sporidesmin in the thermotropic phase transition profiles of dimyristoyl-sn-3-phosphatidyl choline (DMPC) bilayers were similar to those caused by solutes known to localize in the glycerol-backbone region of the lipid bilayer, suggesting a similar localization for oxidized and reduced sporidesmin. Neither form of toxin disrupt the bilayer or membrane organization even at relatively high mole fractions. At concentrations <10 mole% both forms partitioned equally well in the gel and liquid-crystalline phases, whereas at higher concentrations (30 mole%) reduced sporidesmin is preferentially localized in the liquid-crystalline phase. These effects of sporidesmin on the phase properties of DMPC vesicles were also reported by the fluorescence behavior of 10-pyrenedecanoic acid (PDA). The effects of oxidized and reduced sporidesmins on PLA2 kinetics are consistent with their ability to perturb bilayer organisation.  相似文献   

12.
This study aimed to investigate the effects of obovatol isolated from Magnolia obovata on pentobarbital-induced sleeping behaviors and to determine whether these effects were mediated by GABAA receptors/chloride channel activation, using a western blot technique and Cl? sensitive fluorescence probe. GABAA receptors subunits expression and chloride influx were investigated in cultured cerebellar granule cells. Obovatol (0.05, 0.1, and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg). In addition, obovatol (20 and 50 μM) significantly increased Cl? influx in the primary cultured cerebellar granule cells. Moreover, obovatol increased the expression of GABAA receptor α-, β-, and γ-subunits. However, it had no effect on the abundance of the expression of glutamic acid decarboxylase (GAD), suggesting that obovatol might not activate GAD. These results suggest that obovatol potentiates pentobarbital-induced sleeping time through the GABAA receptors/chloride channel activation.  相似文献   

13.
Curcumin, a polyphenol molecule, presents a wide range of biological activities as antioxidant, anticancer, anti-inflammatory, antimicrobial and wound healing. Although some strengths attributed to curcumin derive from promiscuous biological activity, possibly because curcumin can interfere on many membrane located processes, knowledge of underlying interactions are lacking. Mammalian cell membranes characteristically contain 25 to 50% cholesterol/phospholipid ratio; however, most studies involving lipid bilayers and curcumin consider pure phosphatidylcholine and compare effects of curcumin on membranes with those of cholesterol. We investigated the interaction of curcumin with lipid bilayers containing cholesterol mimicking mammalian cells, and used spectroscopy techniques to determine partition coefficients, rigidity parameters and lytic activity. We found that curcumin partitions into different lipid bilayers (104 order coefficients that vary by less than a factor of two), containing cholesterol or not, and in the presence of sphingomyelin or phosphatidylserine. Curcumin decreases rigidity in all tested compositions, except that containing 40% cholesterol in which it increases the lipid packing order. In addition, curcumin induces leakage from giant unilamellar vesicles on a cholesterol concentration dependent way. Our results are compatible with the hypothesis of curcumin interaction with membranes being modulated by the liquid disordered phase and by the coexistence of liquid-ordered/liquid disordered phases. In bilayers containing cholesterol, curcumin assumes a more superficial location, drastically stiffens the 40% cholesterol bilayer and decreases the lytic effect. Our study may help researchers in the analysis of the biological effects of curcumin and curcumin-derived formulations by calling the attention to the discriminating role of the cholesterol content.  相似文献   

14.
Chlorhexidine (CHX) is an effective anti-bacterial agent whose mode of action is thought to be the disruption of the cell membrane. It is known to partition into phospholipid bilayers of aqueous model-membrane preparations. Neutron diffraction data taken at 36 °C on the location of CHX in phosphatidylcholine (PC) bilayers is presented. The center of mass of the deuterated hydrocarbon chain of CHX is found to reside 16 Å from the center of the bilayer in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (14:0–14:0 PC). This places the drug near the glycerol backbone of the lipid, and suggests a mode of action whereby the molecule is bent in half and inserts wedge-like into the lipid matrix. This mechanism is distinct from detergent-like mechanisms of membrane disruption and more similar to some anti-microbial peptide action, where peptides insert obliquely into the bilayer headgroup region to disrupt its structure.  相似文献   

15.
《Phytomedicine》2014,21(5):745-752
Previous studies demonstrated that Withania somnifera Dunal (WS), a safe medicinal plant, prevents the development of tolerance to the analgesic effect of morphine.In the present study, we investigated whether WS extract (WSE) (100 mg/kg, i.p.) may also modulate the analgesic effect induced by acute morphine administration (2.5, 5, 10 mg/kg, s.c.) in the tail-flick and in the hot plate tests, and if it may prevent the development of 2.5 mg/kg morphine-induced rebound hyperalgesia in the low intensity tail-flick test. Further, to characterize the receptor(s) involved in these effects, we studied, by receptor-binding assay, the affinity of WSE for opioid (μ, δ, k), cannabinoid (CB1, CB2), glutamatergic (NMDA), GABAergic (GABAA, GABAB), serotoninergic (5HT2A) and adrenergic (α2) receptors.The results demonstrated that (i) WSE alone failed to alter basal nociceptive threshold in both tests, (ii) WSE pre-treatment significantly protracted the antinociceptive effect induced by 5 and 10 mg/kg of morphine only in tail-flick test, (iii) WSE pre-treatment prevented morphine-induced hyperalgesia in the low intensity tail-flick test, and (iv) WSE exhibited a high affinity for the GABAA and moderate affinity for GABAB, NMDA and δ opioid receptors.WSE prolongs morphine-induced analgesia and suppresses the development of morphine-induced rebound hyperalgesia probably through involvement of GABAA, GABAB, NMDA and δ opioid receptors. This study suggests the therapeutic potential of WSE as a valuable adjuvant agent in opioid-sparing therapies.  相似文献   

16.
To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5–5 mol %) than higher (10–20 mol %) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than Lo ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol % anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane.  相似文献   

17.
18.
Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0–10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer.  相似文献   

19.
Cholesterol induced mechanical effects on artificial lipid bilayers are well known and have been thoroughly investigated by AFM force spectroscopy. However, dynamics of cholesterol impingement into bilayers at various cholesterol concentrations and their effects have not been clearly understood. In this paper we present, the effect of cholesterol as a function of its concentration in a simple single component dioleoylphosphatidylcholine (DOPC) bilayer. The nature of measured breakthrough forces on a bilayer with the addition of cholesterol, suggested that it is not just responsible to increase the mechanical stability but also introduces irregularities across the leaflets of the bilayer. This cholesterol induced asymmetry across the (in the inner and outer leaflets) bilayer is related to the phenomena of interleaflet coupling and is a function of cholesterol concentration probed by AFM can provide an unprecedented direction on mechanical properties of lipid membrane as it can be directly correlated to biophysical properties of a cell membrane.  相似文献   

20.
Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号