首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The experiments reported here were motivated by our interest to express in stably-transfected cells large amounts of recombinant rat GABAA receptors. For this, we developed an original two step selection strategy, in which the first step consisted of transfecting HEK 293 cells with rat GABAA receptor α and β subunits. G 418 resistant colonies isolated at this step were screened for [3H] muscimol binding to select for those that coexpressed α- and β-subunits. The best α and β subunit expressing colony was then supertransfected with a plasmid coding for the γ rat GABAA receptor subunit and a mutant DHFR gene. After a second round of selection, this time in presence of methotrexate, those colonies that coexpressed ternary αβγ GABAA receptor combinations were distinguished using [3H] flumazenil as a probe. This strategy was applied to the isolation of 3 GABAA receptor clones, α1β2γ2S, α1β2γ2S and α1β2γ2S, that expressed relatively high levels of these proteins. These 3 cell lines exhibited pharmacological and functional properties similar to cells transiently-transfected with equivalent subunit combinations. These cell lines therefore provide attractive models with which to evaluate the intrinsic activity and potency of compounds at recombinant GABAA receptor subtypes.  相似文献   

2.
Amphiphilic molecules supposed to affect membrane protein activity could strongly interact also with the lipid component of the membrane itself. Neurosteroids are amphiphilic molecules that bind to plasma membrane receptors of cells in the central nervous system but their effect on membrane is still under debate. For this reason it is interesting to investigate their effects on pure lipid bilayers as model systems. Using the micropipette aspiration technique (MAT), here we studied the effects of a neurosteroid, allopregnanolone (3α,5α-tetrahydroprogesterone or Allo) and of one of its isoforms, isoallopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), on the physical properties of pure lipid bilayers composed by DOPC/bSM/chol. Allo is a well-known positive allosteric modulator of GABAA receptor activity while isoAllo acts as a non-competitive functional antagonist of Allo modulation. We found that Allo, when applied at nanomolar concentrations (50–200 nM) to a lipid bilayer model system including cholesterol, induces an increase of the lipid bilayer area and a decrease of the mechanical parameters. Conversely, isoAllo, decreases the lipid bilayer area and, when applied, at the same nanomolar concentrations, it does not affect significantly its mechanical parameters. We characterized the kinetics of Allo uptake by the lipid bilayer and we also discussed its aspects in relation to the slow kinetics of Allo gating effects on GABAA receptors. The overall results presented here show that a correlation exists between the modulation of Allo and isoAllo of GABAA receptor activity and their effects on a lipid bilayer model system containing cholesterol.  相似文献   

3.
BackgroundGamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders.Hypothesis/PurposeThis study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders.MethodsStigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2β2γ2L, α4β3δ, and α4β3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2β2γ2L, α4β3, and α4β3δ complexes by in silico docking.ResultsStigmasterol enhanced GABA-induced currents at ternary α2β2γ2L, α4β3δ, and binary α4β3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4β3δ was significantly higher compared to the binary α4β3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4β3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of β3 at α4β3δ complex. In in vivo studies, Stigmasterol (0.5–3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism.ConclusionTo our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.  相似文献   

4.
Docosahexaenoic acid (DHA) and other polyunsaturated fatty acids (PUFAs) promote GABA(A) receptor [(3)H]-muscimol binding, and DHA increases the rate of GABA(A) receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [(3)H]-muscimol binding. The mechanism(s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABA(A) receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown that membrane protein function can be regulated by amphiphile-induced changes in bilayer elasticity and hypothesized that GABA(A) receptors could be similarly regulated. We therefore studied the effects of four structurally unrelated amphiphiles that decrease bilayer stiffness (Triton X-100, octyl-beta-glucoside, capsaicin, and DHA) on GABA(A) receptor function in mammalian cells. All the compounds promoted GABA(A) receptor [(3)H]-muscimol binding by increasing the binding capacity of high-affinity binding without affecting the associated equilibrium binding constant. A semiquantitative analysis found a similar quantitative relation between the effects on bilayer stiffness and [(3)H]-muscimol binding. Membrane cholesterol depletion, which also decreases bilayer stiffness, similarly promoted [(3)H]-muscimol binding. In whole-cell voltage-clamp experiments, Triton X-100, octyl-beta-glucoside, capsaicin, and DHA all reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABA(A) receptor function is regulated by lipid bilayer elasticity. PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer.  相似文献   

5.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

6.
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor.  相似文献   

7.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   

8.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

9.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

10.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

11.
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABAA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABAA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ~50 and ~52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABAA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.  相似文献   

12.
Abstract: It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (αxβyγ2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10?4M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (>200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the α3β2γ2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to α1βxγ2 and α2βxγ2 receptor combinations were observed, and weak effects (130% of control values) were detected using the α5β2γ2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an α1β2γ2 receptor combination was used. Given the heterogeneity of the GABAA/benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.  相似文献   

13.
GABAA receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α5 has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α5 subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α5 subunit-containing GABAA receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α4/6 subunit-containing GABAA receptors, but is sensitive to L-655708, an antagonist of the GABAA receptors containing α5 subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α5 subunit in the turtle spinal cord. Together, these results suggest that GABAA receptors containing the α5 subunit mediate the tonic inhibitory currents observed in VHIs.  相似文献   

14.
Pyrazoloquinolinones (PQs) have been extensively studied as modulators of GABAA receptors with different subunit composition, exerting modulatory effects by binding at α+/β- interfaces of GABAA receptors. PQs with a substituent in position R7 have been reported to preferentially modulate α6- subunit containing GABAA receptors which are mostly expressed in the cerebellum but were also found in the olfactory bulb, in the cochlear nucleus, in the hippocampus and in the trigeminal sensory pathway. They are considered potentially interesting in the context of sensori-motor gating deficits, depressive-like behavior, migraine and orofacial pain. Here we explored the option to modify the lead ligands’ R7 position. In the compound series we observed two different patterns of allosteric modulation in recombinantly expressed α6β3γ2 receptors, namely monophasic and biphasic positive modulation. In the latter case the additional phase occurred in the nanomolar range, while all compounds displayed robust modulation in the micromolar range. Nanomolar, near silent binding has been reported to occur at benzodiazepine binding sites, but was not investigated at the diazepam insensitive α6+/γ2- interface. To clarify the mechanism underlying the biphasic effect we tested one of the compounds in concatenated receptors. In these constructs the subunits are covalently linked, allowing to form either the α6+/γ2- interface, or the α6+/β3- interface, to study the resulting modulation. With this approach we were able to ascribe the nanomolar modulation to the α6+/γ2- interface. While not all compounds display the nanomolar phase, the strong modulation at the α6+/β3 interface proved to be tolerant for all tested R7 groups. This provides the future option to introduce e.g. isotope labelled or fluorescent moieties or substituents that enhance solubility and bioavailability.  相似文献   

15.
Abstract: The effect of calcium-phospholipid-dependent protein kinase (PKC) on GABAA receptor function was examined in Xenopus oocytes expressing recombinant human GABAA receptor using two-electrode voltage-clamp measurements. Phorbol 12-myristate 13-acetate (PMA), a potent activator of PKC, inhibited GABA-gated chloride currents by ~72% in oocytes expressing αlβ1γ2L subunit cDNAs. Phorbol 12-monomyristate (PMM), a negative control analogue of PMA, did not alter GABAA receptor responses. To investigate whether activation of PKC could alter the modulatory responses of the receptor complex, the effect of PMA on benzodiazepine and barbiturate potentiation of GABA responses was assessed. In oocytes expressing αlβ1γ2s subunit cDNAs, diazepam (300 nM) potentiated GABA responses by ~160%. Following PMA (5-25 nM/) treatment, diazepam potentiation was significantly increased to 333%. No effect of the inactive phorbol ester PMM (25 nM) was observed on diazepam potentiation of GABA responses. PMA enhancement of diazepam potentiation of GABA responses was also observed in oocytes expressing αlβ1γ2Ssubunit cDNAs, indicating that the unique PKC site present in the Tγ2LL subunit is not required for observing the PMA effect. PMA (5-25 nM) also enhanced pentobarbital potentiation of GABA responses. In oocytes expressing αlβ1γ2L subunit cDNAs, pentobarbital (25 μM) potentiated GABA receptor responses by ~97%. Following treatment with PMA (5-25 nM), pentobarbital potentiation of GABA responses increased to ~ 156%. The present results suggest that protein phosphorylation may alter the coupling between the allosteric modulatory sites within the GABAA receptor complex.  相似文献   

16.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

17.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   

18.
Abstract: Three novel antisera to the γ2 subunit of the γ-aminobutyric acidA (GABAA) receptor/benzodiazepine receptor (GABAAR/BZDR) complex have been made. Anti-γ2S and anti-γ2L are specific antibodies to synthetic peptides that recognize the γ2S (short) and γ2L (long) forms, respectively, of the γ2 subunit. An antibody (anti-γ2IL2) to staphylococcal protein A fusion protein of the large intracellular loop (γ2IL) located between the putative transmembrane segments M3 and M4 of γ2S recognizes both γ2S and γ2L subunits. The antibodies immunoprecipitated both the solubilized and affinity-purified GABAAR/BZDR from rat and bovine brain. Immunoblots with membranes from rat brain cerebral cortex as well as with affinity-purified receptor from bovine cortex show that anti-γ2S and anti-γ2L recognize peptides of 45,000 and 47,000 Mr, respectively. Immunoprecipitation experiments indicate that γ2S is more prevalent in hippocampus, whereas γ2L is more abundant in cerebellum. Intermediate values for each form are found in the cerebral cortex. The results suggest that in the rat brain there is a considerable amount of colocalization of γ2S and γ2L in the same receptor complex. In the cerebral cortex, 15% of the BZDRs contain both γ2S and γ2L subunits and 41–48% of the γ2L subunit coexists with γ2S in the same receptor complex. In cerebellum, in 27% of the clonazepam-sensitive and 39% of the clonazepam-insensitive BZDRs the γ2S and γ2L coexist in the same receptor complex. The latter are presumably localized in granule cells and also contain α6. In addition, almost all (93%) the clonazepam-insensitive BZDRs that contain γ2L also contain a γ2S subunit in the same receptor complex. The most likely interpretation of the results is that there is an important population of granule cell receptors that contain α6, γ2S, and γ2L coexisting in the same receptor complex. Nevertheless, 31% of the cerebellar receptors that contain α6 subunit(s) have neither γ2S nor γ2L subunits. There are also species differences with respect to the relative abundance of γ2S and γ2L. These results might be relevant for understanding the molecular mechanisms underlying some of the GABAAR/BZDR-mediated effects of ethanol intoxication involving cerebellar granule cells.  相似文献   

19.
1. Insolubility of membrane constituents in nonionic detergents such as Triton X-100 has been a widely used biochemical criterion to indicate their localization in membrane domains. However, concerns on the possibility of membrane perturbation in the presence of detergents have led to the development of detergent-free approaches. 2. We have explored the organization of the serotonin1A receptor, an important G-protein coupled receptor, from bovine hippocampus and CHO cells using a detergent-free approach in order to address the points of agreement with our previous results using Triton X-100. 3. A significant fraction of the serotonin1A receptor has been found to be localized in a heavy density fraction obtained using a detergent-free approach to isolate membrane domains. In addition, we have characterized the membrane fractions isolated in terms of their lipid composition and membrane physical properties. 4. The results obtained on the membrane localization of the serotonin1A receptor from the present experiments using a detergent-free approach correlate well with our earlier findings obtained using a detergent-based method (Kalipatnapu, S., and Chattopadhyay, A., FEBS Lett. 576:455–460, 2004). These results provide important information on the membrane organization of the hippocampal serotonin1A receptor and are relevant in view of the concerns on the use of detergent in determination of membrane organization of constituent proteins and lipids.  相似文献   

20.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号