首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV) (genus Begomovirus, family Geminiviridae) as well as their whitefly vector Bemisia tabaci were reported from the south‐west and central regions of Morocco. To establish a more comprehensive view of tomato begomoviruses and B. tabaci biotypes throughout Morocco, 32 tomato fields were surveyed for tomato yellow leaf curl disease (TYLCD) symptoms in southern and northern regions, and 54 samples of leaves from cultivated plants or weeds and 35 B. tabaci individuals were collected and analysed by PCR, randomly amplified polymorphic DNA and sequencing. Only TYLCV or TYLCSV were detected. TYLCV was detected in 15 plant samples whereas TYLCSV only in 4. Sequence analyses revealed the presence of the ‘Spanish’ strain of TYLCSV and distinguished two genetically distinct strains of TYLCV. The begomovirus infections were unevenly distributed throughout Morocco. In the north‐west and north‐central regions where tomato plants exhibiting TYLCD symptoms were rarely observed, only 1 sample out of 13 tested positive for the presence of a begomovirus. In the north‐east region, the ratio of begomovirus‐positive samples was higher, 6/13, and in the south‐west region, it was the highest, 13/14. Consistently the frequency of plants exhibiting TYLCD‐like symptoms in the northern regions was lower than that in the south‐west region. B. tabaci biotype Q is present throughout the country and in Algeria, whereas biotype B, identified for the first time in Morocco, was detected only in the north‐east region.  相似文献   

3.
Begomoviruses are one of the major pathogens in tomato crops worldwide. In Venezuela, six begomovirus species have been described infecting tomato: Potato yellow mosaic virus (PYMV), Euphorbia mosaic Venezuela virus (EuMVV), Merremia mosaic virus (MeMV), Tomato chlorotic leaf distortion virus (ToCLDV), Tomato yellow margin leaf curl virus (TYMLCV) and Tomato yellow leaf curl virus (TYLCV). In this study, the occurrence of these viruses was analysed by PCR in 338 tomato plants exhibiting virus‐like symptoms. Sixty‐three per cent of the plants were positive at least to one of the begomoviruses tested. PYMV and TYLCV were the most frequent viruses showing 39.6 and 23.7% occurrence, respectively. Phylogenetic analyses revealed two groups of PYMV isolates from several Caribbean Basin countries. The first group clustered isolates from several countries, including Venezuela, and the second group clustered only Colombian isolates. Due to the high prevalence of PYMV and TYLCV in Venezuela, it is suggested that the surveillance and control strategies currently applied in the country should be focused on these two begomoviruses.  相似文献   

4.
Whitefly-transmitted geminiviruses were found to be associated with four diseases of crop plants in Burkina Faso: cassava mosaic, okra leaf curl, tobacco leaf curl and tomato yellow leaf curl. Tomato yellow leaf curl is an economically serious disease, reaching a high incidence in March, following a peak population of the vector whitefly, Bemisia tabaci, in December. Okra leaf curl is also a problem in the small area of okra grown in the dry season but is not important in the main period of okra production in the rainy season. The geminiviruses causing these four diseases, African cassava mosaic (ACMV), okra leaf curl (OLCV), tobacco leaf curl (TobLCV) and tomato yellow leaf curl (TYLCV) viruses, were each detected in field-collected samples by triple antibody sand-wich-ELISA with cross-reacting monoclonal antibodies (MAbs) to ACMV. Epitope profiles obtained by testing each virus isolate with panels of MAbs to ACMV, OLCV and Indian cassava mosaic virus enabled four viruses to be distinguished. ACMV and OLCV had similar but distinguishable profiles. The epitope profile of TobLCV was the same as that of one form of TYLCV (which may be the same virus) and was close to the profile of TYLCV from Sardinia. The other form of TYLCV reacted with several additional MAbs and had an epitope profile close to that of TYLCV from Senegal. Only minor variations within each of these four types of epitope profile were found among geminivirus isolates from Burkina Faso. Sida acuta is a wild host of OLCV.  相似文献   

5.
Tomato yellow leaf curl virus (TYLCV) was recently divided into two different species: Tomato yellow leaf curl virus‐Israel (TYLCV‐Is) and Tomato yellow leaf curl virus‐Sardinia (TYLCV‐Sar). There are no rapid methods by which TYLCV viruses may be assigned to either TYLCV‐Is or TYLCV‐Sar species. In the present work, using an extensive alignment of begomovirus sequences, TYLCV‐specific primers were designed and tested which allow the specific amplification of DNA fragments from any isolate of TYLCV. Also, a primer was designed and tested which allows the specific amplification of TYLCV‐Sar. Furthermore, a combination of these primers was selected to develop a duplex PCR method, which has the potential to detect either TYLCV‐Is or TYLCV‐Sar. The PCR methods were also highly effective with minimal sample preparation and allowed direct amplification of TYLCV from infected leaf extracts. This approach may be used in the laboratory as a tool for rapid, large‐scale diagnostics of TYLCV‐infected samples.  相似文献   

6.
The combinational analysis of polymerase chain reaction and restriction enzyme analysis (PCR‐RE) to distinguish six Tomato yellow leaf curl virus (TYLCV) isolates from five countries was developed. Tomato yellow leaf curl virus has spread from the Middle East to Western Europe, Central America and Eastern Asia, and occurs on infected crops such as tomatoes, peppers, cucurbits and beans. Tomato yellow leaf curl virus isolates from Jordan (TYLCV‐Mld[Jo:Cuc] and TYLCV‐IL[Jo:Cuc]), Israel (TYLCV‐IL[IL:Reo:86]), Spain (TYLCV‐Mld[ES72/97]), USA (TYLCV‐IL[US:F10:04]) and Korea (TYLCV‐KR) were collected, and the sequences of the six isolates were analysed to distinguish them by PCR‐RE combination analysis. Oligonucleotide primers for the six TYLCV isolates were designed to amplify approximately 740 base pairs including the intergenic region (IR) and parts of V1 and V2 ORF. Unique restriction enzyme sites were analysed to identify isolate‐specific restriction enzyme sites on the PCR products of each isolate. Three enzymes (DdeI, FauI and BssSI) were selected by in silico analysis, and then, the PCR products following the serial digestion of each restriction enzyme were separated by agarose gel electrophoresis to distinguish the TYLCV isolates. Taken together, the PCR‐RE combination analysis by serial digestion with three restriction enzymes could be a useful method for distinguishing the six isolates.  相似文献   

7.
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed.  相似文献   

8.
Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. Taxonomy: The tomato yellow leaf curl virus‐like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full‐length DNA‐A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. Host range: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petunia×hybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Disease symptoms: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.  相似文献   

9.
Tomato yellow leaf curl virus disease (TYLCVD) has been observed in Tunisia for more than 20 years. Until year 2004, only the Tomato yellow leaf curl Sardinia virus‐Sicily (TYLCSV‐[Sic]) was detected in tomato, pepper and bean crops. In the Sahel region, some tomato samples showing severe TYLCVD symptoms were collected from greenhouses in 2004 and 2005. Typing of these isolates revealed for the first time the presence of the TYLCV Israel in Tunisia. This result was confirmed by using several sets of specific primers and by sequencing. This species has also been detected on pepper and bean collected from fields in the same region. The sequencing of a tomato and a bean isolate showed that they both share more than 97% of sequence identity with the TYLCV from Dominican Republic ( AF024715 ). The TYLCV has been found in single and mixed infection with the TYLCSV‐[Sic].  相似文献   

10.
Since 1997 two distinct geminivirus species, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), have caused a similar yellow leaf curl disease in tomato, coexisted in the fields of southern Spain, and very frequently doubly infected single plants. Tomatoes as well as experimental test plants (e.g., Nicotiana benthamiana) showed enhanced symptoms upon mixed infections under greenhouse conditions. Viral DNA accumulated to a similar extent in singly and doubly infected plants. In situ tissue hybridization showed TYLCSV and TYLCV DNAs to be confined to the phloem in both hosts, irrespective of whether they were inoculated individually or in combination. The number of infected nuclei in singly or doubly infected plants was determined by in situ hybridization of purified nuclei. The percentage of nuclei containing viral DNA (i.e., 1.4% in tomato or 6% in N. benthamiana) was the same in plants infected with either TYLCSV, TYLCV, or both. In situ hybridization of doubly infected plants, with probes that discriminate between both DNAs, revealed that at least one-fifth of infected nuclei harbored DNAs from both virus species. Such a high number of coinfected nuclei may explain why recombination between different geminivirus DNAs occurs frequently. The impact of these findings for epidemiology and for resistance breeding concerning tomato yellow leaf curl diseases is discussed.  相似文献   

11.
Tomato yellow leaf curl disease which is caused by Tomato yellow leaf curl virus (TYLCV) is economically important and a widely spread tomato disease in China. Rapid and accurate detection methods are important in the control TYLCV. Here, a rapid method was developed to identify TYLCV on the basis of recombinase polymerase amplification (RPA) that can be visualized in 5 min using lateral flow dipsticks. The sensitivity and the specificity of this method were evaluated. This method can detect 0·5 pg DNA after 30 min at 37°C without any expensive instrumentation. In addition, it showed higher sensitivity than a PCR method when purified DNA was used. Moreover, the TYLCV was specifically detected, whereas other viruses infecting tomato produced negative results. The crude tomato extracts used in this assay has potential application in minimally equipped plant clinic laboratories. This method will facilitate the early and rapid detection of TYLCV for the timely application of control measures.  相似文献   

12.
Begomoviruses (Geminiviridae family) are characterized by their high recombination rate and a wide range of hosts, making their control difficult. In Costa Rica, various species of bipartite begomoviruses have been reported, which are Pepper golden mosaic virus (PepGMV), Tomato yellow mottle virus (ToYMoV), Tomato leaf curl Sinaloa virus (ToLCSiV) and the monopartite begomovirus Tomato yellow leaf curl virus (TYLCV). Since the TYLCV first report in Costa Rica, neither additional knowledge has been produced on how this begomovirus has spread in the country's territory nor on the distribution of the other bipartite species. A total of 429 tomato samples collected during the years 2015–2016 were used to study these aspects. Each sample was georeferenced and analysed with various techniques such as nucleic acid hybridization, polymerase chain reaction (PCR) and sequencing for the begomoviruses previously reported in Costa Rica. It was found that the presence/absence of the different species can vary, depending on the province. TYLCV is present in the six provinces analysed in this work, with a proportion from 3.7 to 86.6 per cent. Alajuela, Cartago, and Heredia are the provinces most affected by tomato-infecting begomoviruses. Fourteen different haplotypes of TYLCV were detected, but all were identified as TYLCV-IL. The distribution of TYLCV was related to the presence of the whitefly Bemisia tabaci MED, especially in the country's main tomato production areas. This information allows the phytosanitary surveillance services to develop strategies for the integrated management of the disease and to contribute data to the genetic improvement programmes of the crop.  相似文献   

13.

A survey was initiated to detect tomato yellow leaf curl virus (TYLCV) and identify its reservoir weed hosts in six regions (Arusha, Morogoro, Dodoma, Iringa, Kilimanjaro and Dar es Salaam) in Tanzania. Three farms were randomly selected in each region. Assessment of TYLCV incidence was done by relating the number of infected tomato plants to the total number of plants assessed along a diagonal in five quadrants measuring 4m ‐ 4m in size (one at each corner of the farm and one at the centre). Disease severity was scored on a scale of 0 to 4 (where 0 = no symptoms and 4 = very severe symptoms). Within and outside each farm, weeds showing TYLCV-like symptoms were collected and either squash-blotted, dot-blotted or both on nylon membranes. The membranes were hybridized with DIG-labelled probe synthesized for the detection of TYLCV from Sardinia (TYLCV-Sar) following standard protocols. Selected plant species were experimentally inoculated with screenhouse cultures of TYLCV representative isolates from the six regions using Bemisia tabaci to determine their host status. Results indicated that TYLCV incidence and severity were significantly higher (P = 0.05) in Dodoma region than the rest of the regions. In Iringa region, the incidence and severity of TYLCV were the lowest of all regions. TYLCV was detected in 12 of the 17 dot-blotted samples and in all the 21 squashed samples using the non-radioactively labelled riboprobes. Similarly, five plant species (Capsicum annuum, Datura stramonium, Lycopersicon esculentum, Nicotiana glutionsa and N. tabacum) tested in the screenhouse were infected by the six TYLCV isolates used. It is recommended that weeds within and outside tomato farms be removed to eliminate or reduce sources of virus inoculum. The dot and squash blot techniques are convenient for field detection of the virus, and are especially useful for the detection of early and latent infections so that management strategies can be initiated and implemented.  相似文献   

14.
Transmissions of plant viruses between individuals of their vector insects through mating are rare events. Recently, three begomoviruses were found to be transmitted between males and females of the whitefly Bemisia tabaci through mating, and two viruses were shown to be transmitted transovarially to progeny. However, results between reports were not consistent. Here we examined the horizontal and vertical transmission of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl China virus (TYLCCNV) by the B and Q biotypes of B. tabaci, using virus isolates and whitefly colonies established recently in China. Both TYLCV DNA and TYLCCNV DNA were shown to be transmitted horizontally and vertically by each of the two biotypes of the whitefly, but frequency of transmission was usually low. In transovarial transmission, virus DNA was detected in eggs and nymphs but not in the adults of the first generation progeny, except in the combination of TYLCV and Q biotype whitefly where 2–3% of the offspring adults contained the virus DNA. We also showed that the first generation adults, which developed from eggs of viruliferous whiteflies, were not infective to plants. These results demonstrated that for the viruses and whiteflies tested here low frequency of horizontal and vertical transmission can be expected but these two modes of transmission are unlikely to have much epidemiological relevance in the field.  相似文献   

15.
16.
Tomato yellow leaf curl disease is a major constraint for tomato production worldwide and availability of new resistant materials is of great importance for breeding programmes. A phenotypic survey was undertaken to evaluate the level of resistance to the main tomato yellow leaf curl disease-inducing viruses Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus, in several commercial tomato cultivars, never characterised before. Seven weeks post inoculation, two cultivars resulted in high resistant phenotypes to both begomoviruses, and four were tolerant to at least one of them. In the two highly resistant hybrids (SJ12, RFT112), symptoms were completely absent and viral DNA was from 102 to 105 fold lower than in susceptible plants. Molecular marker analysis revealed that these genotypes harbour the resistant genes Ty-1/Ty-3 and Ty-2. Given their high resistance, they can be considered good candidates for cultivation and breeding in areas where incidence of TYLCD is very elevated.  相似文献   

17.
Begomoviruses (genus Begomovirus, family Geminiviridae) have emerged as important plant pathogens in tropical and subtropical regions worldwide. Although these viruses were reported during the 1970s in Costa Rica, they are still poorly known. Therefore, the objective of this study was to analyse the diversity and distribution of begomoviruses in commercial tomato and sweet pepper fields from different agricultural production systems of the major growing regions of Costa Rica. A total of 651 plants were randomly sampled from greenhouses and open field crops during 2011 and 2012 in three different geographical locations. The bipartite begomoviruses Tomato yellow mottle virus, Tomato leaf curl Sinaloa virus and Pepper golden mosaic virus, and the monopartite begomovirus Tomato yellow leaf curl virus were detected in the collected samples. The complete genome of isolates from each species was cloned and sequenced. The frequency of detection of these four begomoviruses in the analysed samples ranged from 0 to 9%, the presence, and the prevalent virus varied largely according to the geographical location, the host (tomato and pepper), and the production system (greenhouses or open fields). An association between geographical region and begomovirus species was observed suggesting that in Costa Rica the heterogeneity on climate, topography and agricultural system might influence the distribution of begomovirus species in the country. A broader survey needs to be conducted to confirm it, although these preliminary results may contribute to the management of begomoviruses in Costa Rica.  相似文献   

18.
Chinese tomato yellow leaf curl virus--a new species of geminivirus   总被引:5,自引:0,他引:5  
GeminivirusesareagroupofplantvirusescharacterizedbytheircircularsinglestrandedDNA(ssDNA)genomeandauniquegeminateparticlemorphology[1].Geminivirusesaredividedintothreesubgroupsonthebasisofgenomeorganizationandinsectvector:AllsubgroupIgeminivirusesareleaf…  相似文献   

19.
The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid ofAgrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2–5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation,L. chilense LA1969 andL. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars.The Hebrew University of Jerusalem, Faculty of Agriculture, Department of Field and Vegetable Crops  相似文献   

20.
Tomato is known as a highly valuable crop and grown worldwide for various uses. The cultivation and tomato production severely affected globally by several diseases caused by various pathogens. Begomoviruses causes yellow mosaic and leaf curl disease of tomato in the tropical, subtropical, temperate, and semi-arid regions. In Saudi Arabia, the tomato production adversely affected by disease caused by begomoviruses known as TYLCV and ToLCSDV. In this study, the pathogen was identified by Polymerase Chain Reaction using virus-specific primers and transmitted by whiteflies to healthy tomato seedlings. In a field survey, the tomato plants were exhibiting symptoms like viral infection. The infected leaf was randomly collected from various fields of tomato growing areas like Jeddah, Makkah, Tabuk, and Hail. The full-length viral genome was amplified by Rolling Circle Amplification technology (RCA) while betasatellites were amplified by PCR using universal betasatellites primers. The full-length viral genome (∼2.7 kb) and betasatellites (∼1.4 kb) were cloned and sequenced bi-directionally. The generated sequences were assembled and analyzed to find out the genetic variability by using bioinformatics tools and the genetic variability and phylogenetic relationships with selected begomoviruses were analyzed. The sequences showed the highest identity with an isolate of ToLCSDV and TYLCV. The nucleotide similarity and phylogenetic relationship showed the closest cluster with ToLCSDV and TYLCV. The data generated in this study elucidate that the causal organism is a variant of either TYLCV or ToLCSDV. The provided information from this study will be highly valuable for researchers and vegetable growers not only in Saudi Arabia but also in Arabian Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号