首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) of macroinvertebrates inhabiting littoral zones of lakes can serve as useful indicators of material loading from the watershed. We collected snails (Semisulcospira spp.) and bivalves (Unio douglasiae biwae Kobelt) from 29 littoral sites in Lake Biwa near the mouths of river tributaries with various human population density (HPD) and land-use patterns. The δ13C and δ15N signatures were determined for three potential food sources: particulate organic matter in the pelagic zone (PPOM), riverine particulate organic matter from tributaries (RPOM) and epilithic organic matter in the littoral zone (EOM). The stable isotope mixing model revealed that snails relied mainly on EOM, and bivalves on PPOM and RPOM. Multiple regression analysis showed that intersite variation in δ15N for snails was best explained by HPD, while variation in δ15N of EOM and nitrate was explained to a lesser extent by HPD. Comparison with isotope signatures of their food sources and riverine nutrients revealed that snails assimilated anthropogenic nitrogen from wastewater in the watershed. Our results also showed that the δ13C value of bivalves was marginally related to the fraction of paddy fields in the watersheds. In conclusion, the isotope signatures of macroinvertebrates inhabiting the littoral zone can be useful indicators of anthropogenic impacts from the watershed.  相似文献   

2.
Stable isotope analysis of organic matter in sediment records has long been used to track historical changes in productivity and carbon cycling in marine and lacustrine ecosystems. While flow dynamics preclude stratigraphic measurements of riverine sediments, such retrospective analysis is important for understanding biogeochemical cycling in running waters. Unique collections of riverine fish scales were used to analyse δ15N and δ13C variations in the food web of two European rivers that experience different degrees of anthropogenic pressure. Over the past four decades, dissolved inorganic N loading remained low and constant in the Teno River (70°N, Finland); in contrast, N loading increased fourfold in the Scorff River (47°N, France) over the same period. Archived scales of Atlantic salmon parr, a riverine life‐stage that feeds on aquatic invertebrates, revealed high δ15N values in the Scorff River reflecting anthropogenic N inputs to that riverine environment. A strong correlation between dissolved inorganic N loads and δ13C values in fish scales was observed in the Scorff River, whereas no trend was found in the Teno River. This result suggests that anthropogenic N‐nutrients enhanced atmospheric C uptake by primary producers and its transfer to fish. Our results illustrate for the first time that, as for lakes and marine ecosystems, historical changes in anthropogenic N loading can affect C cycling in riverine food webs, and confirm the long‐term interactions between N and C biogeochemical cycles in running waters.  相似文献   

3.
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier‐marine habitats by developing a multi‐trophic level Bayesian three‐isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial‐marine habitats. We also compared isotope ratios between glacial‐marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic‐level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier‐nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest‐nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C‐age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C‐age to modern). Thus terrestrial‐derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial‐marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate‐driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska.  相似文献   

4.
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic‐like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic‐rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.  相似文献   

5.
流域人类活动净氮输入量的估算、不确定性及影响因素   总被引:1,自引:0,他引:1  
张汪寿  李叙勇  杜新忠  郝韶楠 《生态学报》2014,34(24):7454-7464
人类活动使得大量的氮素进入流域生态系统,大量氮的盈余导致了一系列生态环境问题的出现。为了评估人类活动对流域生态系统的影响,Howarth等于1996年提出了人类活动净氮输入(NANI)的概念。综述了当前人类活动净氮输入的估算方法、不确定性及影响因素,并得到以下结论:导致NANI估算结果的不确定性原因主要有:内涵分歧、数据来源、尺度转换、估算方法的分歧。影响NANI的主要因素包括:各输入项、人口密度、土地利用组成;对于各输入项而言,化肥施用是最主要的氮素输入来源,占人类活动净氮输入总量的79.0%,其次为作物固氮,占17.6%,食品/饲料氮净输入量占-14.5%,大气沉降占15.7%;对于人口密度,NANI随着人口密度的增大而增大,当人口密度高于100人/km2,人口密度对NANI的影响趋于稳定,其他因素起主导作用。对于土地利用组成:NANI与森林面积比例成负相关,而与耕地面积比例成正相关。  相似文献   

6.
To evaluate the effect of human activities on the amount of nitrogen (N) transported to the Three Gorges Dam (TGD), we have developed and applied a model to estimate the riverine N transport from watersheds draining into the upper Changjiang River basin. By using this model and a database of agricultural statistics, we study the temporal and spatial changes in N inputs to watersheds and surface waters. The total amount of N transported to the surface drainage waters from the agro-ecosystem in 2000 showed a 2.9-fold increase over that in 1980. Considering a constant (37%) loss rate from the river, the annual amount of N transported to the TGD from the agro-ecosystem of the Changjiang river upper basin was about 0.35 × 106, 0.47 × 106, 0.59 × 106, 0.64 × 106 and 1.01 × 106 t in 1980, 1985, 1990, 1995, and 2000, respectively. Further, the transported amount of new anthropogenic reactive N approximately quadrupled in 2000, while the amount of riverine N due to rural human waste varied slightly. Of the total N transported to surface drainage waters in 10 watersheds in 2000, the Jialingjiang watershed accounted for 35%; the TGD region, 15%; and the Toujiang, Wujiang and Minjiang watersheds, 11% each. In 1980, the N sources were concentrated in the rural areas surrounding Chendu City and Chongqing City; however, these sources considerably expanded in the 1990s. The increased use of synthetic fertilizers and the decrease in the fertilizer N-use efficiency are implicated as major causal factors of increased riverine N transport; the calculated amount of N transported to the main tributaries agrees well with previously reported data.  相似文献   

7.
Atmospheric dust has wide-reaching effects, not only influencing climate conditions, but also ecosystems. The eastern region of the Asian continent is one of the largest emitters of dust in the world, and recent economic growth in the region has been accompanied by an increase in anthropogenic emissions. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. We examined fossil pigments and zooplankton remains from 210Pb-dated sediments taken from high mountain lakes of Hourai-Numa and Hachiman-Numa, located in the Towada-Hachimantai National Park of Japan Islands, to uncover historical changes in the phyto- and zooplankton community over the past 100?years. Simultaneously, we measured the geochemical variables of TOC, TN, TP, ??13C, ??15N, and lead isotopes (207Pb/206Pb, 208Pb/206Pb) in the sediments to identify environmental factors causing such changes. As a result, despite few anthropogenic activities in the watersheds, alpine lakes in Japan had increased algal and herbivore plankton biomasses by 3?C6 fold for recent years depending on the surrounding terrestrial vegetation and landscape conditions. Biological and biogeochemical proxies recorded from the lake sediments showed that this eutrophication occurred after the 1990s when P deposition increased as a result of atmospheric loading of dust transported from the Asian continent. The continued increase of anthropogenically produced dust may therefore impart damaging impacts on mountain ecosystems even if they are protected from direct anthropogenic disturbances.  相似文献   

8.
Rivers in urban locations frequently receive contaminated wastewater and particulate waste either directly from storm overflows or from sewage treatment facilities. Although many urban streams are now recovering from wide-scale historic pollution, lower-level effects on water chemistry, nutrients and biotic composition are still widespread. We aimed to determine whether such effects could be detected using stable isotope ratios (??15N, ??13C and ??34S) in macroinvertebrates alone or in conjunction with traditional biomonitoring. Macroinvertebrates were collected upstream and downstream of 11 different secondary wastewater treatment works (WwTW) in South Wales and the Welsh borders (United Kingdom). Overall, mean invertebrate ??15N signatures downstream of the WwTW were significantly enriched despite variation amongst sites. Moreover, changes between upstream and downstream macroinvertebrate ??15N values were highly correlated with patterns in macroinvertebrate community composition, increased total macroinvertebrate abundance, and reduced Shannon Diversity and other biomonitoring indices (% EPT, % shredders and ASPT scores). Changes in invertebrate ??15N values also paralleled the consented discharge volumes and population equivalents from each WwTW. In contrast, isotopic ratios of ??13C and ??34S were unable to distinguish or quantify wastewater input into the rivers but differences were apparent amongst study streams. Overall, these results suggest that macroinvertebrate ??15N signatures can detect and quantify the effects of secondary sewage treatment inputs to riverine ecosystems. Moreover, the method potentially provides a sensitive means for tracing sewage-derived nutrients into food webs while inferring effects on aquatic communities where sewage-loads are subtle or confounded by other stressors.  相似文献   

9.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged (defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal scales in a region of relatively low anthropogenic N input.  相似文献   

10.
van Breemen  N  Boyer  E.W.  Goodale  C.L.  Jaworski  N.A.  Paustian  K.  Seitzinger  S.P.  Lajtha  K.  Mayer  B.  van Dam  D.  Howarth  R.W.  Nadelhoffer  K.J.  Eve  M.  Billen  G. 《Biogeochemistry》2002,(1):267-293
To assess the fate of the large amounts of nitrogen (N) brought into the environment by human activities, we constructed N budgets for sixteen large watersheds (475 to 70,189 km2) in the northeastern U.S.A. These watersheds are mainly forested (48–87%), but vary widely with respect to land use and population density. We combined published data and empirical and process models to set up a complete N budget for these sixteen watersheds. Atmospheric deposition, fertilizer application, net feed and food inputs, biological fixation, river discharge, wood accumulation and export, changes in soil N, and denitrification losses in the landscape and in rivers were considered for the period 1988 to 1992. For the whole area, on average 3420 kg of N is imported annually per km2 of land. Atmospheric N deposition, N2 fixation by plants, and N imported in commercial products (fertilizers, food and feed) contributed to the input in roughly equal contributions. We quantified the fate of these inputs by independent estimates of storage and loss terms, except for denitrification from land, which was estimated from the difference between all inputs and all other storage and loss terms. Of the total storage and losses in the watersheds, about half of the N is lost in gaseous form (51%, largely by denitrification). Additional N is lost in riverine export (20%), in food exports (6%), and in wood exports (5%). Change in storage of N in the watersheds in soil organic matter (9%) and wood (9%) accounts for the remainder of the sinks. The presence of appreciable changes in total N storage on land, which we probably under-rather than overestimated, shows that the N budget is not in steady state, so that drainage and denitrification exports of N may well increase further in the future.  相似文献   

11.
We examined how nitrogen-stable isotopic signatures of food web components (basal resources, primary and lower consumers, and omnivores) in rivers change with increasing levels of human population density (HPD) in their watersheds. Samples were collected from 22 rivers flowing in the Lake Biwa basin, Japan. Among three potential resources at the base of food webs (epilithon, benthic and suspended particulate organic matter), the mean isotopic values (δ15N) of the epilithon (4.5–7.8%) were consistently higher than those of other items (1.9–4.2%) and displayed the most pronounced elevation (by 3.3%) with increasing HPD. The mean δ15N values of the individual taxa of lower consumers (bivalve, snail and caddisfly) tended to increase with increasing HPD, although the pattern and the extent of the elevation were highly variable among the taxa. These results suggest a taxon-specific feature in the N source (or sources) of lower consumers. Our data suggested that human activities (e.g. nutrient loading) potentially induce changes in the N baselines of river food webs. The major N source of bivalves appeared to be shifted from suspended particulate organic matter to other items with increasing HPD. Trophic levels of goby fish (Rhinogobius sp. OR) and shrimp (Palaemon paucidens), being estimated to be at 2.4–3.8 and 2.1–3.4, respectively, did not differ significantly among rivers with different HPD levels. An erratum to this article can be found at  相似文献   

12.
Human activities have greatly increased the input of biologically available nitrogen (N) from land-based sources to aquatic ecosystems; yet few studies have examined how human actions influence N export in regions with a strong seasonality in water availability. In this study, we quantified N inputs and outputs for 23 California watersheds and examined how climate, hydrology, and land use practices influenced watershed N export. N inputs ranged from 581 to 11,234 kg N km−2 year−1 among watersheds, with 80% of total input for the region originating from agriculture (inorganic fertilizer, manure, and legumes). Of the potential N sources examined, mean annual concentrations of dissolved organic N and dissolved inorganic N in study rivers correlated most strongly with manure N input (r 2 = 0.54 and 0.53, respectively). Seasonal N export varied by basin and was correlated with climate, anthropogenic N inputs, and reservoir releases. Fractional export of watershed N inputs by study rivers annually was small (median of 8%) and scaled exponentially with runoff (r = 0.66). Collectively, our results show that anthropogenic activities have altered both the magnitude and timing of watershed N export in California and suggest that targeted management in specific locations and times of the year could reduce N export to downstream systems in the region.  相似文献   

13.
By constructing nitrogen (N) budgets from 1880 to 2002 for watersheds that have undergone urbanization, intensive agricultural specialization or experienced minimal change, we document an uneven timeline of increase in anthropogenic N inputs. N loading to the watersheds of the Lake Michigan Basin grew six-fold from 1880 to 2002, peaking in 1987. Human activities influenced N inputs as early as 1880, and the magnitude and timing of increase differed markedly across regions in accord with population growth, land use, and type of agriculture. The greatest increase occurred from 1950 to 1980, corresponding with rapidly accelerating use of artificial fertilizers, but increases in atmospheric deposition and shifting patterns in crop and livestock production also affected trends. Net anthropogenic N inputs have changed little since about 1980, showing a modest decline due to a leveling out of fertilizer use and greater export of animal feed and products. Using a model that predicts riverine N export from watershed N loadings and river discharge, we found that river TN fluxes from all tributaries increased approximately threefold from 1900 to 2000 but have stabilized or declined over the past two decades, consistent with national surveys that show near-constant or declining riverine TN concentrations. For the LMB, the past two decades has been a period of relative stasis in N inputs to its terrestrial systems and N export from watersheds. This retrospective analysis also points to the challenge of forecasting future trends in N budget terms, which can both increase and decline in response to policy and societal transitions.  相似文献   

14.
林婉奇  蔡金桓  薛立 《生态学报》2019,39(24):9162-9170
研究氮磷添加对不同密度樟树(Cinnamomum camphora)幼苗土壤化学性质的影响,以期为全球化背景下樟树人工林生态系统的土壤养分管理提供依据。以1年生樟树幼苗为试验材料,选择氯化铵(NH4Cl)作为氮肥模拟大气氮沉降,以二水合磷酸二氢钠(NaH_2PO_4·2H_2O)模拟磷添加。氮磷处理设置CK、施N、施P和施N+P 4个水平,其中N、P和N+P施肥量分别为40 g m~(-2)a~(-1)(NH_4Cl)、20 g m-2a-1(NaH_2PO_4·2H_2O)和40g m~(-2)a~(-1)(NH_4Cl)+20 g m~(-2)a~(-1)(NaH_2PO_4·2H_2O)。种植密度设置4个水平:10、20、40和80株/m~2,试验时间为2017年6月至9月。研究结果表明,在各密度幼苗土壤中,N和N+P处理引起pH值的显著下降,N、P和N+P处理的土壤有机质和碱解N含量的变化规律不明显,P处理的幼苗土壤全P含量上升,P和N+P处理的土壤有效P含量增加,N+P处理的土壤全K含量以及N、P和N+P处理的土壤速效K含量均下降。在10、20和40株/m~2幼苗的土壤中,P处理的土壤全N含量高于N和N+P处理的,而80株/m~2幼苗的土壤全N含量低于其他密度幼苗。随着种植密度的增加,各施肥处理的土壤pH、全P、有效P、全K和速效K含量均呈现上升趋势,而施N和施P处理的土壤有机质呈现下降趋势,各施肥处理的土壤碱解N含量变化规律不明显。施肥和密度处理对樟树幼苗土壤有机质、碱解氮和速效钾含量有显著的交互作用。  相似文献   

15.
Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three particulate organic matter sources; riverine plankton (δ13C ?30 ‰ and δ15N 7.9 ‰) identified in the Thames estuary only, marine plankton (average δ13C ?21.4 ‰ and δ15N 4.5 ‰) and a third source with an enriched 13C signature (>?16.7 ‰) and elevated C:N ratio (>12.7). Particulate organic matter with enriched 13C values were observed throughout the Humber estuary and at the marine end-member of the Thames estuary. While bacterial cycling of organic carbon undoubtedly takes place within these estuaries, these processes on their own are unlikely to account for the isotopic signatures seen. The 13C enriched organic matter source is suggested to be due to particulate organic matter input from marsh plants and seagrasses such as Spartina spp. and Zostera on the adjacent salt marshes and mudflats and/or macroalgae along the banks of the estuaries. This 13C enriched signal was also identified approximately 50 km offshore within the southern North Sea, in the East Anglian plume, which transports UK riverine water off-shore in a discrete plume. This plume therefore provides a mechanism to transport this estuarine derived organic matter pool offshore out of the estuaries. These results indicate that estuarine derived organic matter from marsh plants, seagrasses and/or macroalgae contributes to the southern North Sea organic matter pool and is therefore likely to contribute to winter-time shelf sea carbon and nitrogen cycles.  相似文献   

16.
Estuaries are among the most productive, resourceful, and dynamic aquatic ecosystems on Earth. Their productive nature is linked to the fact that they process much of the world's riverine and coastal watershed discharge. These watersheds support more than 75% of the human population and are sites of large increases in nutrient loading associated with urban and agricultural expansion. Increased nutrient loading has led to accelerated primary production, or eutrophication; symptoms include increased algal bloom activity (including harmful taxa), accumulation of organic matter, and excessive oxygen consumption (hypoxia and anoxia). While nutrient-enhanced eutrophication is a “driver” of hypoxia and anoxia, physical–chemical alterations due to climatic events, such as stormwater discharge, flooding, droughts, stagnancy, and elevated temperatures are also involved. The complex interactions of anthropogenic and climatic factors determine the magnitude, duration, and aerial extent of productivity, algal booms, hypoxia, and anoxia. Using the eutrophic Neuse River Estuary (NRE), North Carolina, USA, as a case study, the physical–chemical mechanisms controlling algal bloom and hypoxia dynamics were examined. Because primary production in the NRE and many other estuaries is largely nitrogen (N) limited, emphasis has been placed on reducing N inputs. Both the amounts and chemical forms of N play roles in determining the composition and extent of phytoplankton blooms that supply the bulk of the organic carbon fueling hypoxia. Biomass from bloom organisms that are readily grazed will be readily transferred up the planktonic and benthic food chain, while toxic or inedible blooms frequently promote sedimentary C flux, microbial mineralization, and hence may exacerbate hypoxia potential. From a watershed perspective, nutrient input reductions are the main options for reducing eutrophication. Being able to distinguish the individual and cumulative effects of physical, chemical and biotic controls of phytoplankton productivity and composition is key to understanding, predicting, and ultimately managing eutrophication. Long-term collaborative (University, State, Federal) monitoring, experimental assessments, and modeling of eutrophication dynamics over appropriate spatial and temporal scales is essential for developing realistic, ecologically sound, and cost-effective nutrient management strategies for estuarine and coastal ecosystems impacted by both anthropogenic and climatic perturbations.  相似文献   

17.
Delong MD  Thorp JH 《Oecologia》2006,147(1):76-85
Trophic dynamics of large river–floodplain ecosystems are still not well understood despite development of several conceptual models over the last 25 years. To help resolve questions about the relative contribution of algal and detrital organic matter to food webs in the Upper Mississippi River, we (1) separated living and detrital components of ultrafine and fine transported organic matter (UTOM and FTOM, respectively) by colloidal silica centrifugation; (2) identified stable isotope signatures (δ13C and δ15N) for these two portions of transported organic matter and other potential organic matter sources; and (3) employed a multiple source, dual-isotope mixing model to determine the relative contribution of major energy sources to primary consumers and the potential contribution of basal sources to the biomass of secondary consumers. The δ13C and δ15N of living and detrital fractions of UTOM and FTOM were distinct, indicating clear differences in isotopic composition of the algal and detrital fractions of transported organic matter. Living and detrital transported organic matter also differed from other potential organic matter sources by either δ13C or δ15N. A six-source mixing model using both δ13C and δ15N indicated that algal transported organic matter was the major resource assimilated by primary consumers. The contribution of detrital transported organic matter was small in most cases, but there were a small number of taxa for which it could potentially contribute to more than half the assimilated diet. Colloidal dissolved organic matter, which includes heterotrophic bacteria, accounted for only a small fraction of the organic matter assimilated by most primary consumers, indicating that coupling between microbial processes and metazoan production is minimal. Terrestrial C3 litter from the floodplain forest floor and aquatic macrophytes were also relatively unimportant to the assimilated diet of primary consumers. Application of the mixing model to compare basal source isotopic ratios to secondary consumers revealed that most organic matter moving from primary to secondary consumers originated from algal TOM. Our findings indicate that autochthonous organic matter is the major energy source supporting metazoan production in the main channel of this large river, at least during the summer. This study joins a number of other investigations performed globally that indicate organic matter originating from instream production of sestonic and benthic microalgae is a major driver in the trophic dynamics of large river ecosystems.  相似文献   

18.
Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ15N values to receiving waters. The enriched δ15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.  相似文献   

19.
Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, “the influence of N enrichment on organic N loss” is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km−2 y−1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics.  相似文献   

20.
Macaques are similar to humans both physiologically and behaviorally. In South and Southeast Asia they are also synanthropic, ecologically associated with humans. Synanthropy with humans raises the possibility that macaques come into contact with anthropogenic toxicants, such as lead and mercury, and might be appropriate sentinels for human exposures to certain toxic materials. We measured lead (Pb) and mercury (Hg) levels and characterized the stable isotopic compositions of δ15N and δ13C in hair from three groups of free‐ranging macaques at the Swoyambhu temple in Kathmandhu, Nepal, an urban population that has abundant contact with humans. Hair lead levels were significantly higher among young macaques and differed among the three groups of macaques that were sampled. Hair Hg levels were low. No statistical association was found between stable isotopic compositions (δ15N and δ13C) and Pb and Hg levels. Our data did not find evidence that lead levels were associated with diet. We conclude that, in this population of macaques, behavioral and/or physiologic factors may play a significant role in determining exposure to lead. Chemical analysis of hair is a promising, noninvasive technique for determining exposure to toxic elements in free‐ranging nonhuman primates. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号