首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Insulin-like growth factor (IGF)-I and its binding protein IGF binding protein 5 (IGFBP-5) were highly expressed in inflamed and fibrotic intestine in experimental Crohn's disease. IGF-I induced proliferation and increased collagen synthesis by smooth muscle cells and fibroblasts/myofibroblasts in vitro. Here we studied IGF-I and IGFBP-5 in Crohn's disease tissue. Tissue was collected from patients undergoing intestinal resection for Crohn's disease. IGF-I and IGFBP-5 mRNAs were quantitated by RNase protection assay and Northern blot analysis, respectively. In situ hybridization was performed to localize mRNA expression, and Western immunoblot was performed to quantitate protein expression. IGF-I and IGFBP-5 mRNAs were increased in inflamed/fibrotic intestine compared with normal-appearing intestine. IGF-I mRNA was expressed in multiple cell types in the lamina propria and fibroblast-like cells of the submucosa and muscularis externa. IGFBP-5 mRNA was highly expressed in smooth muscle of the muscularis mucosae and muscularis externa as well as fibroblast-like cells throughout the bowel wall. Tissue IGFBP-5 protein correlated with collagen type I (r = 0.82). These findings are consistent with a mechanism whereby IGF-I acts on smooth muscle and fibroblasts/myofibroblasts to increase collagen synthesis and cellular proliferation; its effects may be modulated by locally expressed IGFBP-5.  相似文献   

2.
Local IGF-I expression is frequently increased in intestinal mesenchyme during adaptive growth of intestinal epithelium, but paracrine growth effects of IGF-I in vivo are not defined. We tested whether overexpression of IGF-I in intestinal mesenchyme increases epithelial growth and if effects are distinct from known effects of circulating IGF-I. SMP8-IGF-I-transgenic (TG) mice overexpress IGF-I driven by an alpha-smooth muscle actin promoter. Mucosal and muscularis growth were assessed in the jejunum, ileum, and colon of SMP8-IGF-I-TG mice and wild-type littermates. Abundance of the SMP8-IGF-I transgene and IGF binding protein (IGFBP)-3 and -5 mRNAs was determined. Mucosal growth was increased in SMP8-IGF-I-TG ileum but not jejunum or colon; muscularis growth was increased throughout the bowel. IGFBP-5 mRNA was increased in SMP8-IGF-I-TG jejunum and ileum and was specifically upregulated in ileal lamina propria. Overexpression of IGF-I in intestinal mesenchymal cells has preferential paracrine effects on the ileal mucosal epithelium and autocrine effects on the muscularis throughout the bowel. Locally expressed IGF-I has distinct actions on IGFBP expression compared with circulating IGF-I.  相似文献   

3.
This study tested the hypothesis that insulin-like growth factor I (IGF-I) expression is increased at sites of fibrosis in diseased intestine of patients with Crohn's disease (CD). IGF-I mRNA was quantified by RNase protection assay in uninvolved and involved intestine of 13 CD patients (10 ileum, 3 colon) and 7 ulcerative colitis (UC) patients (colon). In situ hybridization histochemistry compared the localization of IGF-I and procollagen alpha1(I) mRNAs. Masson's trichrome staining and immunohistochemistry for IGF-I precursor, alpha-smooth muscle actin (A), vimentin (V), desmin (D), and c-kit were used to examine the mesenchymal cell subtypes that express IGF-I and collagen in uninvolved and involved ileum and colon of CD patients and "normal" ileum and colon from noninflammatory controls. IGF-I mRNA was elevated in involved ileum and colon of patients with CD but not in involved colon of patients with UC. IGF-I and procollagen alpha1(I) mRNA showed overlapping distribution within fibrotic submucosa and muscularis propria of involved CD ileum and colon. In involved CD intestine, increased IGF-I precursor expression localized to mesenchymal cells in regions of tissue disorganization and fibrosis in muscularis mucosa, submucosa, and muscularis propria. In these regions, there were increased numbers of V(+) cells relative to normal or uninvolved intestine. Increased IGF-I expression was localized to cells with a phenotype typical of fibroblasts (V(+)/A(-)/D(-)), myofibroblasts (V(+)/A(+)/D(+)), and, to a lesser extent, cells with normal enteric smooth muscle phenotype (V(-)/A(+)/D(+)). We conclude that increased IGF-I expression in multiple mesenchymal cell subtypes and increased numbers of cells with fibroblast/myofibroblast phenotype are involved in fibrosis associated with CD.  相似文献   

4.
The aim of this study was to investigate the cellular and molecular expression of tartrate resistant acid phosphatase (TRAP) as a marker of activated macrophages in macrophage dependent dextran sulphate sodium (DSS)-induced colitis in rats. In normal colon, TRAP+/CX3CR1+ macrophages were located in the upper part of the lamina propria. In the early stage (day 1–3) of acute colitis prior to histopathological changes, induction of the cytokines TNFα, IL-12 and IFNγ occurred concomitant with increased mRNA and enzyme activity of TRAP along with a slight increase of TRAP immunolabelling in macrophages of the upper lamina propria, suggesting induction of TRAP in resident macrophages. Among these cytokines, TNFα up-regulated TRAP expression in the RAW 264.7 monocyte/macrophage cell line. In a later phase (day 7) with fulminant colitis, a massive infiltration of macrophages including recruited TRAP+/CCR2+ cells was observed also in the lower part of the lamina propria as well as in the submuscular layer. Additionally, differentiated cellular expression of pro- and mature TRAP also suggest that mucosal macrophages in the lower part of lamina propria bordering the sub-mucosa provide a source of replenishment of macrophages situated in the upper lamina propria. In conclusion, induction of TRAP provides an early sign of macrophage responsiveness in DSS induced colitis.  相似文献   

5.
The purpose of this study was to determine the effects of aging and caloric restriction (CR) on insulin-like growth factor-I (IGF-I), IGF-I receptor (IGF-IR), IGF-binding protein-3 (IGFBP-3) and IGFBP-4 expression in the stomach and colon of male Fischer 344 rats. Stomach and colonic RNA were prepared from ad libitum (AL) fed or long-term CR rats. Stomach IGF-I, IGFBP-3 and IGFBP-4 mRNA levels increased significantly (P相似文献   

6.
Human intestinal smooth muscle cells in culture produce insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGFBP-4, and IGFBP-5, which can modulate the effects of IGF-I on growth. This study examined the role of IGFBP-4 on IGF-I-induced growth and the mechanisms regulating IGFBP-4 levels. IGFBP-4 inhibited IGF-I-induced [(3)H]thymidine incorporation. IGFBP-4 mRNA levels were not altered by IGF-I. IGF-I caused a concentration-dependent activation of an endogenous IGFBP-4 protease, resulting in time-dependent degradation of intact IGFBP-4 into inactive fragments. Protease activity was measured in a cell-free assay using smooth muscle cell conditioned medium containing the IGFBP-4 protease. The protease was inhibited by EDTA and benzamidine. Protease activity was highest in proliferating cells and lowest in postconfluent cells. The role of endogenous IGF-I in regulating IGFBP-4 degradation was confirmed by the ability of an IGF-I antagonist to inhibit IGF-I-activated IGFBP-4 proteolysis in intact cells. We conclude that in human intestinal smooth muscle cells levels of secreted IGFBP-4 are determined by the confluence-dependent production of a cation-dependent serine protease that is activated by endogenous IGF-I.  相似文献   

7.
The purpose of the present study was to determine whether catabolic stimuli that induce muscle atrophy alter the muscle mRNA abundance of insulin-like growth factor binding protein (IGFBP)-4 and -5, and if so determine the physiological mechanism for such a change. Catabolic insults produced by endotoxin (LPS) and sepsis decreased IGFBP-5 mRNA time- and dose-dependently in gastrocnemius muscle. This reduction did not result from muscle disuse because hindlimb immobilization increased IGFBP-5. Continuous infusion of a nonlethal dose of tumor necrosis factor-alpha (TNF-alpha) decreased IGFBP-5 mRNA 70%, whereas pretreatment of septic rats with a neutralizing TNF binding protein completely prevented the reduction in muscle IGFBP-5. The addition of LPS or TNF-alpha to cultured C(2)C(12) myoblasts also decreased IGFBP-5 expression. Although exogenously administered growth hormone (GH) increased IGFBP-5 mRNA 2-fold in muscle from control rats, muscle from septic animals was GH resistant and no such elevation was detected. In contrast, exogenous administration of IGF-I as part of a binary complex composed of IGF-I/IGFBP-3 produced comparable increases in IGFBP-5 mRNA in both control and septic muscle. Concomitant determinations of IGF-I mRNA content revealed a positive linear relationship between IGF-I and IGFBP-5 mRNA in the same muscle in response to LPS, sepsis, TNF-alpha, and GH treatment. Although dexamethasone decreased muscle IGFBP-5, pretreatment of rats with the glucocorticoid receptor antagonist RU486 did not prevent the sepsis-induced decrease in IGFBP-5 mRNA. In contrast, muscle IGFBP-4 mRNA abundance was not significantly altered by LPS, sepsis, or hindlimb immobilization. In summary, these data demonstrate that various inflammatory insults decrease muscle IGFBP-5 mRNA, without altering IGFBP-4, by a TNF-dependent glucocorticoid-independent mechanism. Finally, IGF-I appears to be a dominant positive regulator of IGFBP-5 gene expression in muscle under both normal and catabolic conditions.  相似文献   

8.
9.
Expression of the insulin-like growth factor-binding protein 5 (IGFBP-5) gene in vascular smooth muscle cells is up-regulated by IGF-I through an IGF-I receptor-mediated mechanism. In this study, we studied the possible involvement of the mitogen-activated protein kinase (MAPK) and PI 3-kinase signaling pathways in mediating IGF-I-regulated IGFBP-5 gene expression. The addition of Des(1-3)IGF-I, an IGF analog with reduced affinity to IGFBPs, resulted in a transient activation of p44 and p42 MAPK. Inhibition of the MAPK activation by PD98059, however, did not affect IGF-I-stimulated IGFBP-5 expression. Des(1-3)IGF-I treatment also strongly activated PI 3-kinase. This activation was probably mediated through IRS-1, because IGF-I stimulation resulted in a significant increase in IRS-1- but not IRS-2-associated PI 3-kinase activity. This activation occurred within 5 min and was sustained at high levels for over 6 h. Likewise, Des(1-3)IGF-I caused a long lasting activation of PKB/Akt and p70(s6k). When LY294002 and wortmannin, two specific inhibitors of PI 3-kinase, were added with Des(1-3)IGF-I, the IGF-I-regulated IGFBP-5 expression was negated. The addition of rapamycin, which inhibits IGF-I-induced p70(s6k) activation, significantly inhibited IGF-I-regulated IGFBP-5 gene expression. These results suggest that the action of IGF-I on IGFBP-5 gene expression requires the activation of the PI 3-kinase-PKB/Akt-p70(s6k) pathway but not the MAPK pathway in vascular smooth muscle cells.  相似文献   

10.
Although IL-17 is a pro-inflammatory cytokine reportedly involved in various autoimmune inflammatory disorders, its role remains unclear in murine models of colitis. Acute colitis was induced by 2.5% dextran sodium sulfate (DSS) treatment for 5 days. A novel sphingosine-1-phosphate receptor agonist W-061, a prototype of ONO-4641, was orally administered daily, and histopathological analysis was performed on the colon. The number of lymphocytes and their cytokine production were also evaluated in spleen, mesenteric lymph node, Peyer's patch and lamina propria of the colon. Daily administration of W-061 resulted in improvement of DSS-induced colitis, and significantly reduced the number of CD4+ T cells in the colonic lamina propria. Numbers of both Th17 and Th1 cells were reduced by W-061 treatment. W-061, however, had no influence on the number of Treg cells in lamina propria. Thus, Th17 and Th1 cells in lamina propria were thought to be the key subsets in the pathogenesis of DSS-induced colitis. In conclusion, W-061 may be a novel therapeutic strategy to ameliorate acute aggravation of inflammatory bowel diseases.  相似文献   

11.
Chronic arthritis is a catabolic state associated with an inhibition of the IGF system and a decrease in body weight. Cachexia and muscular wasting is secondary to protein degradation by the ubiquitin-proteasome pathway. The aim of this work was to analyze the effect of adjuvant-induced arthritis on the muscle-specific ubiquitin ligases muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx) as well as on IGF-I and IGF-binding protein-5 (IGFBP-5) gene expression in the skeletal muscle. We also studied whether the synthetic ghrelin receptor agonist, growth hormone releasing peptide-2 (GHRP-2), was able to prevent arthritis-induced changes in the skeletal muscle. Arthritis induced an increase in MuRF1, MAFbx (P < 0.01), and tumor necrosis factor (TNF)-alpha mRNA (P < 0.05) in the skeletal muscle. Arthritis decreased the serum IGF-I and its gene expression in the liver (P < 0.01), whereas it increased IGF-I and IGFBP-5 gene expression in the skeletal muscle (P < 0.01). Administration of GHRP-2 for 8 days prevented the arthritis-induced increase in muscular MuRF1, MAFbx, and TNF-alpha gene expression. GHRP-2 treatment increased the serum concentrations of IGF-I and the IGF-I mRNA in the liver and in the cardiac muscle and decreased muscular IGFBP-5 mRNA both in control and in arthritic rats (P < 0.05). GHRP-2 treatment increased muscular IGF-I mRNA in control rats (P < 0.01), but it did not modify the muscular IGF-I gene expression in arthritic rats. These data indicate that arthritis induces an increase in the activity of the ubiquitin-proteasome proteolytic pathway that is prevented by GHRP-2 administration. The parallel changes in muscular IGFBP-5 and TNF-alpha gene expression with the ubiquitin ligases suggest that they can participate in skeletal muscle alterations during chronic arthritis.  相似文献   

12.
TL1A is a novel TNF-like factor that acts as a costimulator of IFN-gamma secretion through binding to the death domain-containing receptor, DR3. The aim of this study was to test the hypothesis that TL1A may play an important role in inflammatory bowel disease (IBD) by functioning as a Th1-polarizing cytokine. The expression, cellular localization, and functional activity of TL1A and DR3 were studied in intestinal tissue specimens as well as isolated lamina propria mononuclear cells from IBD patients and controls. TL1A mRNA and protein expression was up-regulated in IBD, particularly in involved areas of Crohn's disease (CD; p < 0.03 vs control). TL1A production was localized to the intestinal lamina propria in macrophages and CD4(+) and CD8(+) lymphocytes from CD patients as well as in plasma cells from ulcerative colitis patients. The amount of TL1A protein and the number of TL1A-positive cells correlated with the severity of inflammation, most significantly in CD. Increased numbers of immunoreactive DR3-positive T lymphocytes were detected in the intestinal lamina propria from IBD patients. Addition of recombinant human TL1A to cultures of PHA-stimulated lamina propria mononuclear from CD patients significantly augmented IFN-gamma production by 4-fold, whereas a minimal effect was observed in control patients. Our study provides evidence for the first time that the novel cytokine TL1A may play an important role in a Th1-mediated disease such as CD.  相似文献   

13.
The purpose of the current study was to examine IGFBP-3, -4, and -5 mRNA and protein expression levels as a function of muscle type, age, and regrowth from an immobilization-induced atrophy in Fischer 344 x Brown Norway rats. IGFBP-3 mRNA expression in the 4-mo-old animals was significantly higher in the red and white portions of the gastrocnemius muscle compared with the soleus muscle. However, there were no significant differences in IGFBP-3 mRNA expression among any of the muscle groups in the 30-mo-old animals. There were no significant differences in IGFBP-5 mRNA expression in any of the muscle groups, whereas in the 30-mo-old animals there was significantly less IGFBP-5 mRNA expression in the white gastrocnemius compared with the red gastrocnemius muscles. Although IGFBP-3 and -5 proteins were detected in the type I soleus muscle with Western blot analyses, no detection was observed in the type II red and white portions of the gastrocnemius muscle. Aging from adult (18 mo) to old animals (30 mo) was associated with decreases in IGFBP-3 mRNA and protein and IGFBP-5 protein only in the soleus muscle. After 10 days of recovery from 10 days of hindlimb immobilization, IGFBP-3 mRNA and protein increased in soleus muscles from young (4-mo) rats; however, only IGFBP-3 protein increased in the old (30-mo) rats. Whereas there were no changes in IGFBP-5 mRNA expression during recovery, IGFBP-5 protein in the 10-day-recovery soleus muscle did increase in the young, but not in the old, rats. Because one of the functions of IGFBPs is to modulate IGF-I action on muscle size and phenotype, it is hypothesized that IGFBP-3 and -5 proteins may have potential modulatory roles in type I fiber-dominated muscles, aging, and regrowth from atrophy.  相似文献   

14.
Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are inflammatory disorders associated with decreased colonic contractility. Here we show that, in experimental colitis in rat induced by trinitrobenzenesulfonic acid, there is a decrease in contraction in response to carbamoylcholine and the sarco/endoplasmic reticulum Ca+2 (SERCA) pump inhibitor thapsigargin. However, the decrease in contractility may occur due to decrease in the SERCA pump levels or their inactivation. Therefore, we examined the protein and mRNA levels for SERCA2 isoform, which is predominant isoform in colonic smooth muscle. There was a decrease in the levels of SERCA2 protein and mRNA levels in inflamed colonic muscle. These findings suggest that decreased SERCA pump levels is responsible for a decrease in the Ca+2 stores in the sarco/endoplasmic reticulum that causes a decrease in the contractility in colonic smooth muscle leading to poor bowel movements.  相似文献   

15.
The embryonic gut of vertebrates consists of endodermal epithelium, surrounding mesenchyme derived from splanchnic mesoderm and enteric neuronal components derived from neural crest cells. During gut organogenesis, the mesenchyme differentiates into distinct concentric layers around the endodermal epithelium forming the lamina propria, muscularis mucosae, submucosa and lamina muscularis (the smooth muscle layer). The smooth muscle layer and enteric plexus are formed at the outermost part of the gut, always some distance away from the epithelium. How this topographical organization of gut mesenchyme is established is largely unknown. Here we show the following: (1) Endodermal epithelium inhibits differentiation of smooth muscle and enteric neurons in adjacent mesenchyme. (2) Endodermal epithelium activates expression of patched and BMP4 in adjacent non-smooth muscle mesenchyme, which later differentiates into the lamina propria and submucosa. (3) Sonic hedgehog (Shh) is expressed in endodermal epithelium and disruption of Shh-signaling by cyclopamine induces differentiation of smooth muscle and a large number of neurons even in the area adjacent to epithelium. (4) Shh can mimic the effect of endodermal epithelium on the concentric stratification of the gut. Taken together, these data suggest that endoderm-derived Shh is responsible for the patterning across the radial axis of the gut through induction of inner components and inhibition of outer components, such as smooth muscle and enteric neurons.  相似文献   

16.
The insulin-like growth factor-binding protein 4 (IGFBP-4), the most abundant IGF-binding protein produced by rodent smooth muscle cells (SMC), is degraded by specific protease(s) potentially releasing IGF-I for local bioactivity. IGFBP-4 protease(s) recognizes basic residues within the midregion of the molecule. We constructed a mutant IGFBP-4 with the cleavage domain substitution 119-KHMAKVRDRSKMK-133 to 119-AAMAAVADASAMA-133. Myc-tagged native and IGFBP-4.7A retained equivalent IGF-I binding affinity. Whereas native IGFBP-4 was cleaved by SMC-conditioned medium, IGFBP-4.7A was completely resistant to proteolysis. To explore the function of the protease-resistant IGFBP-4 in vivo, expression of the mutant and native proteins was targeted to SMC of transgenic mice by means of a smooth muscle alpha-actin promoter. Transgene expression was confined to SMC-rich tissues in all lines. Bladder and aortic immunoreactive IGFBP-4/transgene mRNA ratios in SMP8-BP4.7A mice were increased by 2- to 4-fold relative to SMP8-BP4 mice, indicating that the IGFBP-4.7A protein was stabilized in vivo. SMP8-BP4.7A mice had lower aortic, bladder, and stomach weight and intestinal length relative to SMP8-BP4 counterparts matched for protein expression by Western blotting. Thus, IGFBP-4.7A results in greater growth inhibition than equivalent levels of native IGFBP-4 in vivo, demonstrating a role for IGFBP-4 proteolysis in the regulation of IGF-I action.  相似文献   

17.
IGF binding protein-5 (IGFBP-5) modulates the availability of IGF-I to its receptor and potentiates the intestinotrophic action of IGF-I. Our aim was to test the hypothesis that stimulation of intestinal growth due to coinfusion of IGF-I with total parenteral nutrition (TPN) solution is dependent on increased expression of IGFBP-5 through conducting our studies in IGFBP-5 knockout (KO) mice. IGFBP-5 KO, heterozygote (HT) and wild type (WT) male and female mice were maintained with TPN or TPN plus coinfusion of IGF-I [recombinant human (rh)IGF-I; 2.5 mg x kg(-1) x day(-1)] for 5 days. The concentration of IGF-I in serum was 73% greater (P < 0.0001) in mice given TPN + IGF-I infusion compared with TPN alone. IGF-I attenuated the 2-3 g loss of body weight associated with TPN in WT mice, whereas KO and HT mice did not show improvement in body weight with IGF-I treatment. KO and HT mice had significantly greater levels of circulating IGF-I binding proteins (IGFBPs) compared with WT mice. Intestinal growth due to IGF-I was observed in all groups treated with IGF-I based on greater concentrations of protein and DNA in small intestine and colon and significantly greater crypt depth and muscularis thickness in jejunum. Jejunal expression of IGFBP-5 mRNA was greater in WT mice, whereas IGFBP-3 mRNA was greater in KO mice treated with IGF-I. In summary, the absence of the IGFBP-5 gene did not block the ability of IGF-I to stimulate intestinal growth, possibly because greater jejunal expression of IGFBP-3 compensates for the absence of IGFBP-5.  相似文献   

18.
Insulin-like growth factor-binding protein-5 (IGFBP-5) and insulin-like growth factor-I (IGF-I) are produced by human intestinal smooth muscle cells. Endogenous IGF-I stimulates growth and increases IGFBP-5 secretion. IGFBP-5 augments the effects of IGF-I by facilitating interaction of IGF-I with the IGF-I receptor tyrosine kinase. Andress (Andress, D. L. (1998) Am. J. Physiol. 274, E744-E750) and Berfield et al. (Berfield, A. K., Andress, D. L., and Abrass, C. K. (2000) Kidney Int. 57, 1991-2003) have shown that in osteoblasts and kidney mesangial cells, IGFBP-5 stimulates proliferation and filopodia formation independently of IGF-I, presumably by activating a distinct IGFBP-5 receptor serine kinase. The present study determined whether IGFBP-5 exerts direct effects on growth in human intestinal smooth muscle cells and identified the intracellular signaling pathways involved. IGFBP-5 caused a concentration-dependent increase in [(3)H]thymidine incorporation and an increase in IGF-I secretion that occurred independently of IGF-I and the IGF-I receptor tyrosine kinase. IGFBP-5-induced phosphorylation of p38 MAP kinase, which was abolished by SB203580, or expression of a dominant negative Ras mutant, Ras(S17N), and phosphorylation of Erk1/2, which was abolished by a Raf1 kinase inhibitor, U1026, or expression of Ras(S17N). IGFBP-5-stimulated [(3)H]thymidine incorporation and IGF-I secretion were partly inhibited by SB203580 or U1026 and abolished by the combination of the two inhibitors or by expression of Ras(S17N). These data show that IGFBP-5 stimulates growth and IGF-I secretion in human intestinal smooth muscle cells by activation of p38 MAP kinase-dependent and Erk1/2-dependent pathways that are independent of IGF-I. A positive feedback mechanism therefore links IGFBP-5 and IGF-I secretion that reinforces their individual effects on growth.  相似文献   

19.
The propensity of a range of parasitic helminths to stimulate a Th2 or regulatory cell-biased response has been proposed to reduce the severity of experimental inflammatory bowel disease. We examined whether infection with Schistosoma mansoni, a trematode parasite, altered the susceptibility of mice to colitis induced by dextran sodium sulfate (DSS). Mice infected with schistosome worms were refractory to DSS-induced colitis. Egg-laying schistosome infections or injection of eggs did not render mice resistant to colitis induced by DSS. Schistosome worm infections prevent colitis by a novel mechanism dependent on macrophages, and not by simple modulation of Th2 responses, or via induction of regulatory CD4+ or CD25+ cells, IL-10, or TGF-beta. Infected mice had marked infiltration of macrophages (F4/80+CD11b+CD11c(-)) into the colon lamina propria and protection from DSS-induced colitis was shown to be macrophage dependent. Resistance from colitis was not due to alternatively activated macrophages. Transfer of colon lamina propria F4/80+ macrophages isolated from worm-infected mice induced significant protection from colitis in recipient mice treated with DSS. Therefore, we propose a new mechanism whereby a parasitic worm suppresses DSS-induced colitis via a novel colon-infiltrating macrophage population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号