首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The multicatalytic proteinase. Multiple proteolytic activities   总被引:9,自引:0,他引:9  
The multicatalytic proteinase is a high molecular weight nonlysosomal proteinase which has been isolated from a variety of mammalian tissues and has been suggested to contain several distinct catalytic sites. The enzyme degrades protein and peptide substrates and can cleave bonds on the carboxyl side of basic, hydrophobic, and acidic amino acid residues. The three types of activity have been referred to as trypsin-like, chymotrypsin-like, and peptidyl-glutamyl peptide bond hydrolyzing activities, respectively. All of these proteolytic activities are associated with a single band on native polyacrylamide gels. The pH optimum of the proteinase (pH 7.5-9.5) depends on the substrate. Using synthetic peptide substrates it was possible to demonstrate two distinct activities. Trypsin-like activity is inhibited at concentrations of the peptide aldehyde inhibitors leupeptin and antipain or of N-ethylmaleimide which have little or no effect on chymotrypsin-like activity. Results of mixed-substrate experiments also suggest that there are at least two distinct types of catalytic sites. All proteolytic activity is lost following dissociation by urea or by acid treatment. Polyclonal antibodies raised against the intact multicatalytic proteinase precipitate the complex but have little effect on its proteolytic activities.  相似文献   

2.
An extracellular thiol-dependent serine proteinase was isolated from culture medium filtrate of the microscopic fungus Paecilomyces lilacinus with a yield of 33%. The enzyme is inactivated by specific inhibitors of serine proteinases, phenylmethylsulfonyl fluoride, as well as by chloromercuribenzoate and mercury acetate, but is resistant to chelating agents. The proteinase has broad specificity, hydrolyzes proteins and p-nitroanilides of N-acylated tripeptides, exhibiting maximal activity in hydrolysis of substrates containing long hydrophobic and aromatic residues (norleucine, leucine, phenylalanine) as well as arginine at the P1 position. The enzyme has a molecular weight of 33 kD. The enzyme is most active at pH 10.0-11.5; it is thermostable and is characterized by broad optimum temperature range (30-60 degrees C), displaying about 25% of maximal activity at 0 degrees C. The N-terminal sequence of the enzyme (Gly-Ala-Thr-Thr-Gln-Gly-Ala-Thr-Gly/Ile-Xxx-Gly) has no distinct homology with known primary structures of serine proteinases from fungi and bacilli. Based on its physicochemical and enzymatic properties, the serine proteinase from P. lilacinus can be classified as a thiol-dependent subtilisin-like enzyme.  相似文献   

3.
Proteolytic activities in soluble protein extracts from Mamestra brassicae (cabbage moth) larval midgut were analysed using specific peptide substrates and proteinase inhibitors. Serine proteinases were the major activities detected, with chymotrypsin-like and trypsin-like activities being responsible for approximately 62% and 19% of the total proteolytic activity towards a non-specific protein substrate. Only small amounts of elastase-like activities could be detected. The serine proteinases were active across the pH range 7-12.5, with both trypsin-like and chymotrypsin-like activities maximal at pH 11.5. The digestive proteinases were stable to the alkaline environment of the lepidopteran gut over the timescale of passage of food through the gut, with 50% of trypsin and 40% of chymotrypsin activity remaining after 6h at pH 12, 37 degrees C. Soybean Kunitz trypsin inhibitor (SKTI) ingestion by the larvae had a growth-inhibitory effect, and induced inhibitor-insensitive trypsin-like activity. Qualitative and quantitative changes in proteinase activity bands after gel electrophoresis of gut extracts were evident in SKTI-fed larvae when compared with controls, with increases in levels of most bands, appearance of new bands, and a decrease in the major proteinase band present in extracts from control insects.  相似文献   

4.
Using specific proteinase inhibitors, we demonstrated that serine proteinases in the tarnished plant bug, Lygus lineolaris, are major proteinases in both salivary glands and gut tissues. Gut proteinases were less sensitive to inhibition than proteinases from the salivary glands. Up to 80% azocaseinase and 90% of BApNAse activities in the salivary glands were inhibited by aprotinin, benzamidine, and PMSF, whereas only 46% azocaseinase and 60% BApNAse activities in the gut were suppressed by benzamidine, leupeptin, and TLCK. The pH optima for azocaseinase activity in salivary glands ranged from 6.2 to 10.6, whereas the pH optima for gut proteinases was acidic for general and alkaline for tryptic proteinases. Zymogram analysis demonstrated that approximately 26-kDa proteinases from salivary glands were active against both gelatin and casein substrates. Three trypsin-like cDNAs, LlSgP2-4, and one trypsin-like cDNA, L1GtP1, were cloned from salivary glands and gut, respectively. Putative trypsin precursors from all cloned cDNAs contained a signal peptide, activation peptide, and conserved N-termini (IVGG). Other structural features included His, Asp, and Ser residues for the catalytic amino acid triad of serine proteinase active sites, residues for the binding pocket, and four pairs of cysteine residues for disulfide bridges. Deduced trypsin-like proteins from LlSgP2, LlSgP3, and LlGtP1 cDNAs shared 98-99% sequence identity with a previously reported trypsin-like precursor, whereas the trypsin-like protein of LlSgP4 shared only 44% sequence identity with all other trypsin-like proteins, indicating multi-trypsin forms are present in L. lineolaris.  相似文献   

5.
Extracellular proteases secreted by the filamentous fungus Trichoderma harzianum have been identified. A proteinase active towards Z-Ala-Ala-Leu-pNa--the substrate of subtilisin-like proteases--dominated in the culture medium. This proteinase is synthesized de novo in response to addition of a protein substrate to the medium. Changing the carbohydrate in the culture medium changed the quantitative and qualitative spectrum of secreted enzymes. The most active extracellular proteinase of Trichoderma harzianum was purified 322-foldfrom the culture medium and obtained with a yield of 7.2%. The molecular mass of this proteinase is 73 kD and its pI is 5.35. The isolated enzyme has two distinct activity maxima, at pH 7.5 and 10.0, and is stable in the pH range 6.0-11.0. The temperature optimum for enzyme activity is 40 degrees C at pH 8. 0. The proteinase is stable up to 45-50 degrees C (depending on the substrate used). Calcium ions stabilized the enzyme at 55-60 degrees C. According to data on the study of functional groups of the active center and substrate specificity, the enzyme isolated from the culture medium of Trichoderma harzianum is a subtilisin-like serine proteinase.  相似文献   

6.
A homogeneous serine proteinase was isolated from cultural filtrates of the extreme halophilic bacteria Halobacterium mediterranei 1538 using affinity chromatography on bacitracin-Sepharose, ultrafiltration and gel filtration on Sephadex G-75, with a 48% yield and 260-fold purification. The enzyme was completely inactivated by specific inhibitors of serine proteinases, PMSF and DFP, as well as by Hg2+ and PCMB. The enzyme activity was strongly dependent of NaCl concentration, the enzyme being inactivated below 0.75 M NaCl. Inactivation of the enzyme was also seen in the presence of 2-7% organic solvents. The pH optimum for Glp-Ala-Ala-Leu-pNA hydrolysis is 8.0-8.5; Km is 0.14 mM, kcat is 36.9 s-1. The stability optimum lies at pH 5.5-8.0, temperature optimum is at 55 degrees C. The enzyme molecular weight is 41,000 Da; pI is 7.5. The substrate specificity of the enzyme is comparable to that of secretory subtilisins; the extent of protein substrate hydrolysis is similar to that of proteinase K. The N-terminal sequence of Halobacterium mediterranei serine proteinase, Asp-Thr-Ala-Asn-Asp-Pro-Lys-Tyr-Gly-Ser-Gln-Tyr-Ala-Pro-Gln-Lys-Val-Asn- Ala- Asp-, reveals a 50% homology with the aminoterminal sequence of Thermoactinomyces vulgaris serine proteinase. Hence, the serine proteinase secreted by halophilic bacteria may be considered as a structural and functional analog of eubacterial enzymes.  相似文献   

7.
Three endopeptidases, proteinases A, B, and Y, were purified from baker's yeast, Saccharomyces cerevisiae. Two molecular forms of proteinase A (PRA), Mr 45,000 and 54,000, (estimated on SDS-PAGE) were obtained. Both forms were inhibited by pepstatin and other acid proteinase inhibitors. The enzyme digested hemoglobin most rapidly at pH 2.7-3.2 and casein at pH 2.4-2.8 and 5.5-6.0. The optimum pH for hydrolysis of protein substrates could be shifted to about 5 with 4-6 M urea. Urea also stimulated the enzyme activity by 30-50%. As other acid proteinases, the enzyme preferentially cleaved peptide bonds of X-Tyr and X-Phe type. A proteinase B (PRB) preparation of approximately Mr 33,000 possessed milk clotting activity and showed an inhibition pattern typical for seryl-sulfhydryl proteases. The purified enzyme could be stabilized with 40% glycerol and stored at -20 degrees C without significant loss of activity for several months. The third endopeptidase, designated PRY, of Mr 72,000 when estimated by Sephadex G-100 gel filtration, had properties resembling PRA and PRB. Similar to PRB, it could be inhibited by up to 90% with phenylmethylsulfonyl fluoride and para-chloromercuribenzoate and preferentially hydrolyzed the Leu15-Tyr16 peptide bond of the oxidized beta-chain of insulin. On the other hand, contrary to PRB, it had neither milk clotting activity nor esterolytic activity toward N-acetyl-L-tyrosine ethyl ester and N-benzoyl-L-tyrosine ethyl ester and was stable during storage at -20 degrees C without glycerol. The enzyme also showed a lower pH optimum for hydrolysis of casein yellow than PRB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Marine endosymbiontic Roseobacter sp. (MMD040), which produced high yields of protease, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in Luria-Bertani broth. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 37 degrees C and 7.0, respectively. The enzyme exhibited maximum activity in pH range of 6-9 with an optimum pH of 8.0 and retained nearly 92.5% activity at pH 9.0. The enzyme was stable at 40 degrees C and showed 89% activity at 50 degrees C. Based on the present findings, the enzyme was characterized as thermotolerant alkaline protease, which can be developed for industrial applications.  相似文献   

9.
A proteinase secreted in the late stationary phase was isolated from the culture fluid of Bacillus intermedius 3-19 by ion-exchange chromatography on CM-cellulose followed by FPLC on a Mono S column. The enzyme was completely inhibited by the serine proteinase inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. The maximum proteolytic activity against the synthetic chromogenic substrate Z-Ala-Ala-Leu-pNA was observed at pH 9.0. The molecular weight of the enzyme is 28 kD and its isoelectric point is 9.2. We have also determined pH- and thermostability and Km and kcat of this proteinase. The enzyme has been classified as a thiol-dependent serine proteinase. N-Terminal amino acid sequence (10 residues) and amino acid composition of the protein were also determined. By the mode of hydrolysis of peptide bonds in the oxidized B-chain of insulin, this enzyme is similar to the thiol-dependent serine proteinase 1 from B. intermedius 3-19 secreted during vegetative growth.  相似文献   

10.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

11.
A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5–10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90°C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85 min at 100°C and 12 min at 110°C. Received September 24, 1997 / Accepted May 20, 1998  相似文献   

12.
In order to find a unique proteinase, proteinase-producing bacteria were screened from fish sauce in Thailand. An isolated moderately halophilic bacterium was classified and named Filobacillus sp. RF2-5. The molecular weight of the purified enzyme was estimated to be 49 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10-11 under 10% NaCl, and was highly stable in the presence of about 25% NaCl. The activity was strongly inhibited by phenylmethane sulfonyl fluoride (PMSF), chymostatin, and alpha-microbial alkaline proteinase inhibitor (MAPI). Proteinase activity was activated about 2-fold and 2.5-fold by the addition of 5% and 15-25% NaCl respectively using Suc-Ala-Ala-Phe-pNA as a substrate. The N-terminal 15 amino acid sequence of the purified enzyme showed about 67% identity to that of serine proteinase from Bacillus subtilis 168 and Bacillus subtilis (natto). The proteinase was found to prefer Phe, Met, and Thr at the P1 position, and Ile at the P2 position of peptide substrates, respectively. This is the first serine proteinase with a moderately thermophilic, NaCl-stable, and NaCl-activatable, and that has a unique substrate specificity at the P2 position of substrates from moderately halophilic bacteria, Filobacillus sp.  相似文献   

13.
It was the purpose of this study to define the chromogranin A-processing proteinases present in highly purified preparations of bovine chromaffin granules. The most active enzyme had a pH optimum of 5.0 and was inhibited by pepstatin. It could be identified immunologically as a cathepsin D-like enzyme and subcellular fractionation established its lysosomal origin. After removal of this enzyme the remaining activity at pH 5.0 was mainly due to a cathepsin B-like proteinase. The presence of this enzyme could also be attributed to lysosomal contamination. In the presence of calcium, a further proteolytic activity became apparent at pH 5.0. This enzyme which was inhibited by rho-chloromercuriphenylsulfonic acid was localized in chromaffin granules. A trypsin-like peptidase, most active at pH 8.2, was enriched in a membrane wash of chromaffin granules. Subcellular fractionation indicated that this enzyme is preferentially bound to the membranes of very dense particles probably representing a subpopulation of chromaffin granules. This study establishes that the most active chromogranin A-degrading proteinases present in highly purified chromaffin granules are attributable to lysosomal contamination. Two enzymes with low activity (a Ca2+ activated proteinase and a trypsin-like enzyme) are, apparently, true constituents of chromaffin granules.  相似文献   

14.
The cultural filtrates of S. thermovulgaris contain a proteinase which is active towards the chromogenic subtilisin substrate, Z-Ala-Ala-Leu-pNa, and azocasein. Pure enzyme preparations were obtained by affinity chromatography on bacitracin-Sepharose with subsequent rechromatography on the same adsorbent. The proteinase was completely inactivated by PMSF and DFP, the specific inhibitors for serine proteinase, by thiol reagents (HgCl2, PCMB) and by the protein inhibitor from S. jantinus. The pH activity optimum for the enzyme is 7.8-8.2, temperature optimum is 55 degrees C. The enzyme is stable at pH 6-9, has a pI of 5.0 and a molecular mass of 32 kDa. When tested against the peptide substrate, the enzyme shows a specificity characteristic for subtilisins. The N-terminal sequence of the enzyme, Tyr-Thr-Pro-Asn-Asp-Pro-Tyr-Phe-Ser-Ser-Arg-Gln-Tyr-Gly, shows a 100% homology with that of terminase, a thiol-dependent serine proteinase. On the basis of the above considerations the enzyme may be related to the subfamily of thiol-dependent serine proteinases.  相似文献   

15.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

16.
It was shown that the plasminogen activator inhibitor, ZGlyGlyArgCH2Cl, inactivates the kininogenase and plasminogen activator activities in the whole human granulocyte lysate and human granulocyte proteinase fractions isolated by isoelectrofocusing from the granulocyte lysate (pH 3-10). The kinetics of irreversible inhibition of the ZGlyGlyArgpNA-amidase activity in granulocyte proteinase fractions (pI 10.75, 8.9 and 8.3) by ZGlyGlyArgCH2Cl was measured. These data confirm the earlier obtained results on the trypsin-like nature of the human granulocyte plasminogen activator and its identity to this cell kininogenase.  相似文献   

17.
A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae   总被引:2,自引:0,他引:2  
A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.  相似文献   

18.
A thiol proteinase was isolated from buckwheat seeds and purified 300-fold, using ammonium sulfate, acetone fractionation ion-exchange chromatography on Sephadex CM-50 and electrofocussing. The proteinase preparation obtained was found homogenous after polyacrylamide gel electrophoresis at pH 4.5. The molecular weight of the enzyme (75.000) was determined by gel-filtration through Sephadex G-100. The activation of proteinase by cysteine, 2-mercaptoethanol and dithiothreitol, its inhibition by p-chloromercurybenzoate and the absence of inhibition by diisopropyl fluorophosphate and EDTA suggest that the enzyme isolated is a thiol proteinase. The enzyme hydrolyzed many peptide bonds in the B-chain of insulin, showing high substrate specificity. The glutelin and globulin fractions of buckwheat seed proteins were hydrolyzed by the enzyme. It is assumed that the hydrolysis of reserve proteins of buckwheat seeds is the main function of the proteinase isolated.  相似文献   

19.
20.
A proteinase from the larval midgut of Vespa orientalis was purified by exchange chromatography on DEAE-Sephadex A-50 and gel filtration on Sephadex G-75. This purified enzyme was proved to be homogeneous by electrophoresis on a cellulose acetate membrane. The molecular weight was calculated to be 27,000 by gel filtration. Optimum pH for the hydrolysis of N-benzoyl-arginine-ethyl ester (BAEE) was 7·5 to 8·5, and optimum temperature with casein as a substrate was 60°C at pH 8·0 for 20 min. According to studies with synthetic inhibitors the hornet protease belongs to the ‘serine proteases’, being inhibited by phenylmethyl sulphonylfluoride (PMSF) and tosyl-lysyl chloromethane (TLCK). The hydrolysis of different amino acid ester bonds and the cleavage specificity on the B chain of oxidized insulin allow us to speak of a trypsin-like protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号