首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
从拟南芥基因组中克隆了热激转录因子(At Hsf A6a),构建了过量表达(over-expression,OE)和反义(anti-sense,AS)植物表达载体并转化拟南芥,获得了拟南芥纯合转基因株系。对其进行耐高温处理,结果显示:43℃处理2 h,过量表达转基因植株存活率(86%)远高于野生型(59%);而反义转基因植株存活率则只有43%,显著低于野生型。43℃处理0.5 h,过量表达转基因植株的离子渗漏水平显著低于野生型,而反义转基因植株则大幅度升高。基因表达分析证明,AtHsfA6a的表达受热胁迫诱导,并且Hsp70是受AtHsfA6a调控的下游靶基因。上述结果表明,拟南芥AtHsfA6a可能通过调节Hsp70表达,提高植物耐受高温胁迫的能力。  相似文献   

2.
砂藓(Racomitrium canescens)是一种具有极强耐脱水性的苔藓植物,编码磷脂酶D的基因RcPLD能够在砂藓的脱水和复水过程中产生显著的表达响应,它可能参与了砂藓的强耐脱水性功能。该研究使用已克隆的RcPLD编码序列构建拟南芥(Arabidopsis thaliana)过量表达转基因株系rcpld-oe,初步考察过表达株系的干旱胁迫耐受能力及其相关的生理生化指标,分析RcPLD增强拟南芥抗旱性的机制。结果表明:(1)利用已克隆的RcPLD编码序列构建了植物中的过表达载体,成功构建了RcPLD的过表达转基因拟南芥株系rcpld-oe,并获得了多个T_3代rcpld-oe纯合体株系。(2)在正常生长条件下,rcpld-oe株系T_3代纯合体植株比野生型拟南芥植株体积小,但营养生长期较长,抽薹较晚,莲座叶衰老速率较慢;在干旱处理条件下,rcpld-oe株系表现出比野生型拟南芥更强的干旱耐受能力。(3)在干旱胁迫处理过程中,rcpld-oe株系莲座叶的水分散失速率降低,可能在一定程度上降低了干旱对膜完整性的损伤和光合作用的抑制,但其渗透调节物质含量的变化相对较小。研究发现,在干旱胁迫条件下,rcpld-oe植株莲座叶的水分散失速率和光合作用抑制程度显著降低,从而表现出明显强于野生型的干旱耐受能力,这为后续RcPLD功能的深入研究和更多砂藓抗旱功能基因的挖掘奠定了基础。  相似文献   

3.
为了研究山葡萄CBF基因调节植物对盐胁迫的应答机理,分别构建了山葡萄Va CBF1、Va CBF2和Va CBF3的植物过表达载体。经酶切及琼脂糖电泳检测证实3个基因均插入到p BASTA中,表明表达载体构建成功。然后,分别将3个植物过表达载体转入农杆菌EHA105中,并通过浸花法浸染拟南芥。利用除草剂筛选获得3个基因的拟南芥过表达株系。最后,对野生型拟南芥与转基因拟南芥进行盐胁迫处理,发现OE-CBF2转基因植株的主根伸长长度显著长于其它植株,3个转基因株系的侧根长度也明显长于野生型植株。上述结果表明山葡萄CBF基因可能在植物盐胁迫中对根部生长发育起到非常重要的调控作用。  相似文献   

4.
ASR(ABA,stress,ripening induced protein)是一类响应植物干旱胁迫的关键转录因子。在许多植物中已有报道,然而尚未见香蕉(Musa acuminata)VPASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个AS尺基因,即MaASRl(登录号为AY628102)。干旱胁迫下,该基因在叶片中的表达量高于根部。将MaASRl转入拟南芥∽rabidopsisthaliana),Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现,此两转基因株系的叶片变小且变厚Northern和Western检测结果表明,MaASR1在L14和L38中表达。控水处理后,L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后,对MaASR1转基因株系中ABA/胁迫响应基因的表达分析,发现MaASR7可增强转基因株系对ABA信号的敏感度,但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

5.
ASR(ABA, stress, ripening induced protein)是一类响应植物干旱胁迫的关键转录因子, 在许多植物中已有报道, 然而尚未见香蕉(Musa acuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因, 即MaASR1(登录号为AY628102)。干旱胁迫下, 该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsis thaliana), Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现, 此两转基因株系的叶片变小且变厚; Northern和Western检测结果表明, MaASR1在L14和L38中表达。控水处理后, L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后, 对MaASR1转基因株系中ABA/胁迫响应基因的表达分析, 发现MaASR1可增强转基因株系对ABA信号的敏感度, 但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

6.
植物在生长过程中会受到各种非生物胁迫的伤害,导致生长发育和产量受到严重影响,胚胎晚期丰富蛋白(late embryogenesis abundant proteins,LEA蛋白)在植物抵抗非生物胁迫过程中起着重要的保护作用。在前期的研究基础上,将受多种胁迫诱导的柠条锦鸡儿CkLEA1(GenBank登录号KC309408)基因转入野生型拟南芥,通过实时荧光定量PCR从7株T3代纯合体中筛选出3个转基因株系做进一步研究。种子萌发率实验发现,在200 mmol/L NaCl和400 mmol/L甘露醇处理下,转基因株系萌发率均高于野生型拟南芥。干旱处理2周大的幼苗后,转基因株系明显比野生型更抗旱,存活率高于野生型,并且失水率低于野生型。同时,转基因株系积累了较少的丙二醛(MDA),超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)含量也高于野生型。这些结果表明,柠条锦鸡儿CkLEA1基因在种子萌发阶段提高了拟南芥对盐和渗透胁迫的耐受性,并且提高了转基因拟南芥幼苗生长阶段对干旱胁迫的抵抗能力。  相似文献   

7.
CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为Gh CBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,Gh CBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了Gh CBF2基因的表达量。亚细胞定位分析结果发现Gh CBF2定位在细胞核中。将Gh CBF2基因构建到由35S启动子调控的植物表达载体p MD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达Gh CBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转Gh CBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29A和ERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明Gh CBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。  相似文献   

8.
转拟南芥P5CS1基因增强羽衣甘蓝的耐旱性   总被引:1,自引:0,他引:1  
为提高羽衣甘蓝的耐旱性,本文将拟南芥Δ1-吡咯啉-5-羧酸合成酶(P5CS1)基因经农杆菌介导转入羽衣甘蓝植株中,检测转基因株系与野生型植株在干旱胁迫下P5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干重、鲜重和整株存活率。结果表明,在15%PEG6000渗透胁迫下,转基因植株的P5CS1基因mRNA表达量明显增加,转基因植株脯氨酸含量是野生型的2.4倍;主根长、最长侧根长、侧根数目、整株干重和鲜重均高于野生型,干重/鲜重则低于野生型,转基因植株的平均存活率为78%,极显著高于野生型。数据显示,AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐旱性。  相似文献   

9.
采用实时荧光定量RT-PCR和Northern blotting技术检测了野生型拟南芥中CBP60g基因对丁香假单胞菌和非生物胁迫的响应,并对丁香假单胞菌接种后,野生型拟南芥、cbp60g-1突变体和CBP60g过表达转基因植物中抗逆相关基因的表达变化进行检测。结果显示:(1)在野生型拟南芥中CBP60g基因的表达能被丁香假单胞菌、高盐、冷和机械损伤所诱导。(2)经丁香假单胞菌诱导后病程相关基因PR5和AIG1的表达在过表达转基因植物中明显高于野生型。(3)受干旱和ABA诱导的AtMYB2基因的表达在过表达转基因植物中也高于野生型。研究表明,CBP60g同时参与了拟南芥对生物和非生物胁迫响应。  相似文献   

10.
构建了植物过量表达载体p35S::GaSus3,通过花序浸染法成功获得转GaSus3基因拟南芥植株。利用NaCl模拟盐胁迫处理,证实转基因拟南芥与野生型相比耐盐性明显增强。在盐胁迫下,转基因拟南芥受到的影响较小,而野生型则受盐害影响严重:转基因拟南芥具有更好的萌发率和主根长度,以保证植株正常生长;盐胁迫下转基因拟南芥能保持较多的绿色叶片,而野生型则过早黄化死亡。研究还发现,转基因拟南芥的过氧化氢酶活性在胁迫前后都高于野生型,这说明转GaSus3基因能够提高拟南芥抗氧化胁迫的能力。研究结果为进一步探讨GaSus3基因在棉花耐盐方面的功能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号