首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the signaling effectors located downstream of receptor activator of NF-κB (RANK) activation are calcium-sensitive. However, the early signaling events that lead to the mobilization of intracellular calcium in human osteoclasts are still poorly understood. The Ca2+-sensitive fluorescent probe Fura2 was used to detect changes in the intracellular concentration of Ca2+ ([Ca2+]i) in a model of human osteoclasts. Stimulating these cells with receptor activator of NF-κB ligand (RANKL) induced a rapid and significant increase in [Ca2+]i. Adding extracellular Ca2+ chelators, depleting intracellular stores, and the use of a phospholipase C inhibitor all indicated that the Ca2+ was of extracellular origin, suggesting the involvement of a Ca2+ channel. We showed that none of the classical Ca2+ channels (L-, T-, or R-type) were involved in the RANKL-induced Ca2+ spike. However, the effect of high doses of Gd3+ did suggest that TRP family channels were present in human osteoclasts. The TRPV-5 channel was expressed in osteoclasts and was mainly located in the cellular area in contact with the bone surface. Furthermore, the RNA inactivation of TRPV-5 channel completely inhibited the RANKL-induced increase in [Ca2+]i, which was accompanied in the long term by marked activation of bone resorption. Overall, our results show that RANKL induced a significant increase in [Ca2+]i of extracellular origin, probably as a result of the opening of TRPV-5 calcium channels on the surface of human osteoclasts. Our findings suggest that TRPV-5 contributes to maintaining the homeostasis of the human skeleton via a negative feedback loop in RANKL-induced bone resorption.  相似文献   

2.
3.
Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent l-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and l-Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The heterocommunication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events.  相似文献   

4.
Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca2+]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca2+ sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca2+-sensitized force are not well understood. Using permeabilized blood vessels from PRG(−/−) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca2+-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5′-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca2+ transient and phasic force components and the onset of Ca2+-sensitized force.  相似文献   

5.
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca2+ in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca2+ ([Ca2+]i), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca2+]i occurred 30 min after gAd treatment, after which [Ca2+]i increased continually and exceeded the initial level. The mitochondrial Ca2+ ([Ca2+]m) detected by Rhod-2 fluorescence started to increase at 6 h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca2+]i in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca2+]m oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.  相似文献   

6.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

7.
Carbonic anhydrase (CA) enzymes catalyze the chemical equilibration among CO2, HCO3 and H+. Intracellular CA (CAi) isoforms are present in certain types of cancer, and growing evidence suggests that low levels correlate with disease severity. However, their physiological role remains unclear. Cancer cell CAi activity, measured as cytoplasmic CO2 hydration rate (kf), ranged from high in colorectal HCT116 (∼2 s−1), bladder RT112 and colorectal HT29, moderate in fibrosarcoma HT1080 to negligible (i.e. spontaneous kf = 0.18 s−1) in cervical HeLa and breast MDA-MB-468 cells. CAi activity in cells correlated with CAII immunoreactivity and enzymatic activity in membrane-free lysates, suggesting that soluble CAII is an important intracellular isoform. CAi catalysis was not obligatory for supporting acid extrusion by H+ efflux or HCO3 influx, nor for maintaining intracellular pH (pHi) uniformity. However, in the absence of CAi activity, acid loading from a highly alkaline pHi was rate-limited by HCO3 supply from spontaneous CO2 hydration. In solid tumors, time-dependence of blood flow can result in fluctuations of CO2 partial pressure (pCO2) that disturb cytoplasmic CO2-HCO3-H+ equilibrium. In cancer cells with high CAi activity, extracellular pCO2 fluctuations evoked faster and larger pHi oscillations. Functionally, these resulted in larger pH-dependent intracellular [Ca2+] oscillations and stronger inhibition of the mTORC1 pathway reported by S6 kinase phosphorylation. In contrast, the pHi of cells with low CAi activity was less responsive to pCO2 fluctuations. Such low pass filtering would “buffer” cancer cell pHi from non-steady-state extracellular pCO2. Thus, CAi activity determines the coupling between pCO2 (a function of tumor perfusion) and pHi (a potent modulator of cancer cell physiology).  相似文献   

8.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

9.
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations.  相似文献   

10.
Oscillations in intracellular free Ca2+ concentration ([Ca2+]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca2+]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca2+]i oscillations involve a number of cytoplasmic and endoplasmic Ca2+ processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca2+]i oscillations. The model suggests that store-operated Ca2+ entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca2+]i oscillations are abolished, which agrees with the experimental observation that [Ca2+]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca2+]i oscillations.  相似文献   

11.
[Ca2+]i signaling regulates sperm motility, enabling switching between functionally different behaviors that the sperm must employ as it ascends the female tract and fertilizes the oocyte. We report that different behaviors in human sperm are recruited according to the Ca2+ signaling pathway used. Activation of CatSper (by raising pHi or stimulating with progesterone) caused sustained [Ca2+]i elevation but did not induce hyperactivation, the whiplash-like behavior required for progression along the oviduct and penetration of the zona pellucida. In contrast, penetration into methylcellulose (mimicking penetration into cervical mucus or cumulus matrix) was enhanced by activation of CatSper. NNC55-0396, which abolishes CatSper currents in human sperm, inhibited this effect. Treatment with 5 μm thimerosal to mobilize stored Ca2+ caused sustained [Ca2+]i elevation and induced strong, sustained hyperactivation that was completely insensitive to NNC55-0396. Thimerosal had no effect on penetration into methylcellulose. 4-Aminopyridine, a powerful modulator of sperm motility, both raised pHi and mobilized Ca2+ stored in sperm (and from microsomal membrane preparations). 4-Aminopyridine-induced hyperactivation even in cells suspended in Ca2+-depleted medium and also potentiated penetration into methylcellulose. The latter effect was sensitive to NNC55-039, but induction of hyperactivation was not. We conclude that these two components of the [Ca2+]i signaling apparatus have strikingly different effects on sperm motility. Furthermore, since stored Ca2+ at the sperm neck can be mobilized by Ca2+-induced Ca2+ release, we propose that CatSper activation can elicit functionally different behaviors according to the sensitivity of the Ca2+ store, which may be regulated by capacitation and NO from the cumulus.  相似文献   

12.
In skeletal muscle, dysfunctional contractile activity has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. Muscle force production is impaired and fatigability and muscle fragility deteriorate with diabetes. Use of a novel in vivo model permits investigation of [Ca2+]i homeostasis in diabetic skeletal muscle. Within this in vivo environment we have shown that diabetes perturbs the Ca2+ regulatory system such that resting [Ca2+]i homeostasis following muscle contractions is compromised and elevations of [Ca2+]i are exacerbated. This review considers the impact of diabetes on the capacity of skeletal muscle to regulate [Ca2+]i, following muscle contractions and, in particular, the relationship between muscle fatigue and elevated [Ca2+]i in a highly ecologically relevant circulation-intact environment. Importantly, the role of mitochondria in calcium sequestration and the possibility that diabetes impacts this process is explored. Given the profound microcirculatory dysfunction in diabetes this preparation offers the unique opportunity to study the interrelationships among microvascular function, blood-myocyte oxygen flux and [Ca2+]i as they relate to enhanced muscle fatigability and exercise intolerance.  相似文献   

13.
Pulsatile insulin release from glucose-stimulated β-cells is driven by oscillations of the Ca2+ and cAMP concentrations in the subplasma membrane space ([Ca2+]pm and [cAMP]pm). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP]pm, [Ca2+]pm, and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 β-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca2+]pm, [cAMP]pm, and PIP3. Inhibitors of protein kinase A (PKA) markedly diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The reduced PIP3 response could be attributed to accelerated depolarization causing early rise of [Ca2+]pm that preceded the elevation of [cAMP]pm. However, the amplitude of the PIP3 response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP3 oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP3 oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca2+]pm and amplifying [cAMP]pm signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.  相似文献   

14.
In the labouring uterus, millions of myocytes forming the complex geometrical structure of myometrium contract in synchrony to increase intrauterine pressure, dilate the cervix and eventually expel the foetus through the birth canal. The mechanisms underlying the precise coordination of contractions in human myometrium are not completely understood. In the present study, we have characterized the spatio‐temporal properties of tissue‐level [Ca2+]i transients in thin slices of intact human myometrium. We found that the waveform of [Ca2+]i transients and isotonic contractions recorded from thin slices was similar to the waveform of isometric contractions recorded from the larger strips in traditional organ bath experiments, suggesting that the spatio‐temporal information obtained from thin slices is representative of the whole tissue. By comparing the time course of [Ca2+]i transients in individual cells to that recorded from the bundles of myocytes we found that the majority of myocytes produce rapidly propagating long‐lasting [Ca2+]i transients accompanied by contractions. We also found a small number of cells showing desynchronized [Ca2+]i oscillations that did not trigger contractions. The [Ca2+]i oscillations in these cells were insensitive to nifedipine, but readily inhibited by the T‐type Ca2+ channel inhibitor NNC55‐0396. In conclusion, our data suggest that the spread of [Ca2+]i signals in human myometrium is achieved via propagation of long‐lasting action potentials. The propagation was fast when action potentials propagated along bundles of myocytes and slower when propagating between the bundles of uterine myocytes.  相似文献   

15.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

16.
Microtubule (MT) plus-end tracking proteins (+TIPs) are involved in the regulation of MT plus-end dynamics and stabilization. It was reported previously that an increase in intracellular Ca2+ concentration ([Ca2+]i) induced by disruption of the plasma membrane stimulates rearrangement of MTs [T. Togo, Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site, J. Cell Sci. 119 (2006) 2780-2786], suggesting that some +TIPs are regulated by Ca2+. In the present study, the behavior of adenomatous polyposis coli (APC) following an increase in [Ca2+]i was observed using Xenopus A6 epithelial cell expressing GFP-tagged APC. An increase in [Ca2+]i by cell membrane disruption or by ionomycin treatment induced dissociation of APC without depolymerizing MTs. Inhibition of a tyrosine kinase and GSK-3β suppressed APC dissociation upon an increase in [Ca2+]i. Western blotting analysis showed that Ca2+ transients activated GSK-3β through a tyrosine kinase. These results suggest that Ca2+ stimulates redistribution of APC through a tyrosine kinase- and GSK-3β-dependent pathway.  相似文献   

17.
Ischemia/reperfusion (I/R) damage in the heart occurs mainly during the first minutes of reperfusion. Urocortin (Ucn) is a member of the corticotrophin-releasing factor that has been identified as a potent endogenous cardioprotector peptide when used in pre- and postconditioning protocols. However, the underlying mechanisms are not completely elucidated. Here, we focused on intracellular calcium ([Ca2+]i) handling by Ucn when applied in early reperfusion. We used Langendorff-perfused rat hearts to determine hemodynamic parameters, and confocal microscopy to study global [Ca2+]i transients evoked by electrical stimulation in isolated cardiomyocytes loaded with fluorescence Ca2+ dye fluo-3AM. We found that the acute application of Ucn at the onset of reperfusion, in isolated hearts submitted to ischemia, fully recovered the hearts contractility and relaxation. In isolated cardiac myocytes, following ischemia we observed that the diastolic [Ca2+]i was increased, the systolic [Ca2+]i transients amplitude were depressed and sarcoplasmic reticulum (SR) Ca2+ load was reduced. These effects were correlated to a decrease in the Na+/Ca2+ exchanger (NCX) activity. Importantly, Ucn applied at reperfusion produced a complete recovery in diastolic [Ca2+]i and global [Ca2+]i transient amplitude, which were due to NCX activity improvement. In conclusion, we demonstrated that [Ca2+]i handling play an essential role in postconditioning action of Ucn.  相似文献   

18.
Summary This report summarizes our recent work on the role of intracellular Ca2+ ([Ca2+]i) in regulating mammalian ciliary beat frequency (CBF). CBF from a single ovine cilium and [Ca2+]i from the same cell were measured by digital video phase contrast microscopy and fura-2 ratiometric imaging video microscopy, respectively. Cells were stimulated with two exposures to 10 M acetylcholine (ACh). CBF was recorded during the first and [Ca2+]i during the second stimulation. ACh increased [Ca2+]i and CBF transiently with indistinguishable kinetics and, early in culture, even induced [Ca2+]i oscillations and ciliary frequency modulations with the same peak-to-peak time interval. Cells treated with 1 M thapsigargin, an inhibitor of the endoplasmic-reticulum Ca2+-ATPase, showed transient [Ca2+]i and CBF increases, again with similar kinetics, which often remained at an elevated plateau. Application of ACh to cells pretreated with thapsigargin produced decreases in both [Ca2+]i and CBF. Finally, changing extracellular Ca2+-concentrations induced corresponding changes in [Ca2+]i that were associated with kinetically similar CBF changes. These data strongly suggested that [Ca2+]i is a critical signal to regulate CBF in mammalian tracheal epithelial cells. In an initial effort to provide constraints on the number and type of reactions that link changes in [Ca2+]i to changes in CBF, simultaneous recordings of both signals from a single cell were analyzed. Such recordings provided higher resolution of the kinetic responses of CBF and [Ca2+]i to ACh as well as they allowed direct assessment of the coupling between [Ca2+]i and CBF. Simultaneous measurements revealed that [Ca2+]i and CBF were perfectly correlated within the CBF measurement time resolution, except for the period of the fastest changes in both signals during the initial ACh exposure. There, changes in CBF lagged the changes in [Ca2+]i by 1–3 ciliary beat cycles (ca. 150–450 ms).  相似文献   

19.
Summary Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.  相似文献   

20.
Phospholipase Cζ (PLCζ) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCζ is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCζ showed [Ca2+]i oscillation-inducing and PLCζ-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCζ remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCζ cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCζ into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCζ, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCζ is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号