首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B virus: DNA polymerase activity of deletion mutants   总被引:8,自引:0,他引:8  
The hepadnavirus P gene product is a multifunctional protein with priming, DNA- and RNA-dependent DNA polymerase, and RNase H activities. Nested N- or C-terminal deletion mutations and deletions of domain(s) in human HBV polymerase have been made. Wild-type and deletion forms of MBP-fused HBV polymerase were expressed in E. coli, purified by amylose column chromatography, and the DNA-dependent DNA polymerase activities of the purified proteins were compared. Deletion of the terminal protein or spacer regions reduced enzyme activity to 70%, respectively. However, deletion of the RNase H domain affected polymerase activity more than that of the terminal protein or spacer region. The polymerase domain alone or the N-terminal deletion of the polymerase domain still exhibited enzymatic activity. In this report, it is demonstrated that the minimal domain for the polymerizing activity of the HBV polymerase is smaller than the polymerase domain.  相似文献   

2.
3.
He Y  Li J  Heck S  Lustigman S  Jiang S 《Journal of virology》2006,80(12):5757-5767
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates the receptor interaction and immune recognition and is considered a major target for vaccine design. However, its antigenic and immunogenic properties remain to be elucidated. In this study, we immunized mice with full-length S protein (FL-S) or its extracellular domain (EC-S) expressed by recombinant baculoviruses in insect cells. We found that the immunized mice developed high titers of anti-S antibodies with potent neutralizing activities against SARS pseudoviruses constructed with the S proteins of Tor2, GD03T13, and SZ3, the representative strains of 2002 to 2003 and 2003 to 2004 human SARS-CoV and palm civet SARS-CoV, respectively. These data suggest that the recombinant baculovirus-expressed S protein vaccines possess excellent immunogenicity, thereby inducing highly potent neutralizing responses against human and animal SARS-CoV variants. The antigenic structure of the S protein was characterized by a panel of 38 monoclonal antibodies (MAbs) isolated from the immunized mice. The epitopes of most anti-S MAbs (32 of 38) were localized within the S1 domain, and those of the remaining 6 MAbs were mapped to the S2 domain. Among the anti-S1 MAbs, 17 MAbs targeted the N-terminal region (amino acids [aa] 12 to 327), 9 MAbs recognized the receptor-binding domain (RBD; aa 318 to 510), and 6 MAbs reacted with the C-terminal region of S1 domain that contains the major immunodominant site (aa 528 to 635). Strikingly, all of the RBD-specific MAbs had potent neutralizing activity, 6 of which efficiently blocked the receptor binding, confirming that the RBD contains the main neutralizing epitopes and that blockage of the receptor association is the major mechanism of SARS-CoV neutralization. Five MAbs specific for the S1 N-terminal region exhibited moderate neutralizing activity, but none of the MAbs reacting with the S2 domain and the major immunodominant site in S1 showed neutralizing activity. All of the neutralizing MAbs recognize conformational epitopes. These data provide important information for understanding the antigenicity and immunogenicity of S protein and for designing SARS vaccines. This panel of anti-S MAbs can be used as tools for studying the structure and function of the SARS-CoV S protein.  相似文献   

4.
5.
The fact that HSP90 proteins and their chaperonin partners play an important role in epsilon RNA binding of duck HBV Pol protein during duck HBV replication has been reported. To elucidate the molecular basis of HBV Pol/HSP90 interaction, we have characterized the HSP90 interaction to HBV Pol. We found that human HBV Pol protein upon synthesis in rabbit reticulocyte lysate formed a complex with HSP90 in vitro as duck HBV Pol did. In addition, HSP90 protein was copurified with MBP/POL protein expressed in HepG2 cells, suggesting that human HBV Pol protein is associated with HSP90 in vivo. To localize the HSP90 interaction site region, several deletion mutants of HBV Pol translated in vitro were immunoprecipitated with anti-HSP90 antibody. The result indicates that C-terminal regions of the TP and RT domains interact with HSP90 independently.  相似文献   

6.
Antibody to the capsid (PORF2) protein of hepatitis E virus (HEV) is sufficient to confer immunity, but knowledge of B-cell epitopes in the intact capsid is limited. A panel of murine monoclonal antibodies (MAbs) was generated following immunization with recombinant ORF2.1 protein, representing the C-terminal 267 amino acids (aa) of the 660-aa capsid protein. Two MAbs reacted exclusively with the conformational ORF2.1 epitope (F. Li, J. Torresi, S. A. Locarnini, H. Zhuang, W. Zhu, X. Guo, and D. A. Anderson, J. Med. Virol. 52:289-300, 1997), while the remaining five demonstrated reactivity with epitopes in the regions aa 394 to 414, 414 to 434, and 434 to 457. The antigenic structures of both the ORF2.1 protein expressed in Escherichia coli and the virus-like particles (VLPs) expressed using the baculovirus system were examined by competitive enzyme-linked immunosorbent assays (ELISAs) using five of these MAbs and HEV patient sera. Despite the wide separation of epitopes within the primary sequence, all the MAbs demonstrated some degree of cross-inhibition with each other in ORF2. 1 and/or VLP ELISAs, suggesting a complex antigenic structure. MAbs specific for the conformational ORF2.1 epitope and a linear epitope within aa 434 to 457 blocked convalescent patient antibody reactivity against VLPs by approximately 60 and 35%, respectively, while MAbs against epitopes within aa 394 to 414 and 414 to 434 were unable to block patient serum reactivity. These results suggest that sequences spanning aa 394 to 457 of the capsid protein participate in the formation of strongly immunodominant epitopes on the surface of HEV particles which may be important in immunity to HEV infection.  相似文献   

7.
Fragments cDNA (nt 935-1475, 1091-1310, 935-1193) encoding N-terminal part of protein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human were obtained and cloned. Recombinant polypeptides of glycoprotein E (E1-86, E53-126, E1-180) of the WNV with corresponding amino acid sequence to the cloned fragments of cDNA and modeling the epitopes of domains I and II of surface glycoprotein E were purified by affinity chromatography. Twelve types of monoclonal antibodies (MAbs) created in our laboratory against recombinant polypeptide E1-180 interact with glycoprotein E of the WNV as results of Western blot and ELISA that is demonstrating an similarity of chemical structure of short recombinant polypeptides and corresponding amino acid sequence regions of WNV protein E. Analysis of interactions of MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus let us reveal no less than six epitopes within domains I and II of glycoprotein E of the WNV. No less than seven types of MAbs to 86-126 aa region of the domain II were found where located peptide providing fusion of virus--cell membranes (98-110 aa). The epitope for anti-receptor MAbs 10H10 within 53-86 aa region of domain II of protein E of the WNV was mapped and it shows that the fusion peptide and co-receptor of protein E for cellular laminin-binding protein (LBP) are spatial nearness. X-ray model of protein E let us suppose that bc-loop (73-89 aa) of domain II interacts with LBP and together with cd-loop (fusion peptide) determines an initial stages of penetration virions into cell.  相似文献   

8.
9.
The architecture of transmissible gastroenteritis coronavirus includes three different structural levels, the envelope, an internal core, and the nucleocapsid that is released when the core is disrupted. Starting from purified virions, core structures have been reproducibly isolated as independent entities. The cores were stabilized at basic pH and by the presence of divalent cations, with Mg(2+) ions more effectively contributing to core stability. Core structures showed high resistance to different concentrations of detergents, reducing agents, and urea and low concentrations of monovalent ions (<200 mM). Cores were composed of the nucleoprotein, RNA, and the C domain of the membrane (M) protein. At high salt concentrations (200 to 300 mM), the M protein was no longer associated with the nucleocapsid, which resulted in destruction of the core structure. A specific ionic interaction between the M protein carboxy terminus and the nucleocapsid was demonstrated using three complementary approaches: (i) a binding assay performed between a collection of M protein amino acid substitution or deletion mutants and purified nucleocapsids that led to the identification of a 16-amino-acid (aa) domain (aa 237 to 252) as being responsible for binding the M protein to the nucleocapsid; (ii) the specific inhibition of this binding by monoclonal antibodies (MAbs) binding to a carboxy-terminal M protein domain close to the indicated peptide but not by MAbs specific for the M protein amino terminus; and (iii) a 26-residue peptide, including the predicted sequence (aa 237 to 252), which specifically inhibited the binding. Direct binding of the M protein to the nucleoprotein was predicted, since degradation of the exposed RNA by RNase treatment did not affect the binding. It is proposed that the M protein is embedded within the virus membrane and that the C region, exposed to the interior face of the virion in a population of these molecules, interacts with the nucleocapsid to which it is anchored, forming the core. Only the C region of the M protein is part of the core.  相似文献   

10.
Previous studies show that the Hsp90 complex facilitates binding of duck hepatitis B virus polymerase on the epsilon stem-loop region in pregenomic RNA for the priming of Pol. In this report, we found that Hsp90 also binds to human HBV Pol and its binding seems to be involved in in vitro priming of human HBV Pol. (i) Inhibition of Hsp90 by anti-Hsp90 antibody (3G3) and (ii) the stripping of the Hsp90 by 1 M NaCl buffer containing 1% NP-40 almost completely reduced in vitro priming activity of human HBV Pol expressed in insect cells. However, binding of human HBV Pol to pregenomic RNA is different from that of duck HBV Pol. It seems that Hsp90 makes the human HBV Pol competent for in vitro priming rather than maintaining the human HBV Pol/pregenomic RNA complex as duck HBV Pol. In addition, although Hsp70 is a component of the Hsp90 complex, Hsp70 can directly bind to human HBV Pol without Hsp90.  相似文献   

11.
In order to analyze the antigenic structure of nonstructural protein (NSP) 4 of group A avian rotavirus strain PO-13, 25 monoclonal antibodies (MAbs) against NSP4 expressed in Escherichia coli were produced. All MAbs reacted with NSP4 on Western blotting, indicating that they recognized sequential epitopes. To determine the antigenic sites (ASs) recognized by the produced MAbs, seven truncated NSP4s were expressed in E. coli. Western blotting analysis showed that there are at least four major ASs on PO-13 NSP4, designated as AS I located in amino acids (aa) 151 to 169, AS II (aa 136 to 150), AS III (aa 112 to 133) and AS IV (aa 1 to 24). Two MAbs reacted exclusively with AS III encompassing the region that has been reported to be an enterotoxin domain. MAbs against ASs II, III and IV reacted with all avian rotaviruses tested by indirect immunofluorescent antibody assays. MAbs against AS I reacted with turkey strains, Ty-1 and Ty-3, but not with a chicken strain, Ch-1. Nine of 11 MAbs against AS II cross-reacted with NSP4 of mammalian rotavirus strains with different NSP4 genotypes. These results suggest that AS II on NSP4 is widely conserved among a variety of rotaviruses.  相似文献   

12.
13.
14.
15.
We have analyzed the effects of mutations in the herpes simplex virus type 1 DNA polymerase (Pol) C-terminal UL42 binding domain on the activity of Pol and its ability to form complexes with and be stimulated by UL42 in vitro. Wild-type Pol expressed in Saccharomyces cerevisiae was both bound and stimulated by UL42 in vitro. C-terminal truncations of 19 and 40 amino acids (aa) did not affect the ability of Pol to be stimulated by UL42 in vitro. This stimulation as well as basal Pol activity in the presence of UL42 was inhibited by polyclonal anti-UL42 antiserum, thus indicating a physical interaction between Pol and UL42. Removal of the C-terminal 59 aa of Pol and internal deletions of 72 aa within the Pol C terminus eliminated stimulation by UL42. None of the truncations or deletions within Pol affected basal polymerase activity. In contrast with their ability to be stimulated by UL42, only wild-type Pol and Pol lacking the C-terminal 19 aa bound UL42 in a coimmunoprecipitation assay. These results demonstrate that a functional UL42 binding domain of Pol is separable from sequences necessary for basal polymerase activity and that the C-terminal 40 aa of Pol appear to contain a region which modulates the stability of the Pol-UL42 interaction.  相似文献   

16.
Previous studies showed that hepatitis B virus polymerase (HBV Pol) interacts with host factors such as the Hsp90 complex, which is a critical step in viral genome replication. In this report, we propose that another chaperone, Hsp60, interacts with human HBV Pol and that this is a very important step for maturation of human HBV Pol into the active state. In the immunoprecipitation of recombinant human HBV Pol expressed in insect cells with the recombinant baculovirus expression system, the 60-kDa protein was coimmunoprecipitated with Pol and the protein was identified as Hsp60 through peptide sequencing and immunogenic analysis with an anti-Hsp60 antibody. In vitro experiments showed that Hsp60 strongly affected human HBV Pol activity in that (i) blocking of Hsp60 by the protein-specific antibody reduced human HBV Pol activity, (ii) the activity was increased by addition of Hsp60 in the presence of ATP, and (iii) ATP synergistically activated human HBV Pol with Hsp60. In vivo experiments showed that inhibition of Hsp60 in cells by a mutant Hsp60, C Delta 540, resulted in the reduction of human HBV Pol activity. In summary, our results indicate that the interaction is significant for conversion of human HBV Pol into the active state.  相似文献   

17.
18.
19.
20.
GP4 is a minor structural glycoprotein encoded by ORF4 of Lelystad virus (LV). When it was immunoprecipitated from cell lysates and extracellular virus of CL2621 cells infected with LV, it was shown to have an apparent molecular mass of approximately 28 and 31 kDa, respectively. This difference in size occurred because its core N-glycans were modified to complex type N-glycans during the transport of the protein through the endoplasmic reticulum and Golgi compartment. A panel of 15 neutralizing monoclonal antibodies (MAbs) reacted with the native GP4 protein expressed by LV and the recombinant GP4 protein expressed in a Semliki Forest virus expression system. However, these MAbs did not react with the GP4 protein of U.S. isolate VR2332. To map the binding site of the MAbs, chimeric constructs composed of ORF4 of LV and VR2332 were generated. The reactivity of these constructs indicated that all the MAbs were directed against a region spanning amino acids 40 to 79 of the GP4 protein of LV. Six MAbs reacted with solid-phase synthetic dodecapeptides. The core of this site consists of amino acids 59 to 67 (SAAQEKISF). Comparison of the amino acid sequences of GP4 proteins from various European and North American isolates indicated that the neutralization domain spanning amino acids 40 to 79 is the most variable region of GP4. The neutralization domain of GP4, described here, is the first identified for LV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号