首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Lundell  H G Martinson 《Biochemistry》1989,28(25):9757-9765
Active genes in higher eukaryotes reside in chromosomal domains which are more sensitive to digestion by DNase I than the surrounding inactive chromatin. Although it is widely assumed that some modification of higher order structure is important to the preferential DNase I sensitivity of active chromatin, this has so far not been tested. Here we show that the structural distinction between DNase I sensitive and resistant chromatin is remarkably stable to digestion by trypsin. Chick embryonic red blood cell nuclei were subjected to increasing levels of trypsin digestion and then assayed in the following three ways: (1) by gel electrophoresis for histone cleavage, (2) by sedimentation and nuclease digestion for loss of higher order structure, and (3) by dot-blot hybridization to globin and ovalbumin probes for disappearance of preferential DNase I sensitivity. We have found that chromatin higher order structure is lost concomitantly with the cleavage of histones H1, H5, and H3. In contrast, the preferential sensitivity of the globin domain to DNase I persists until much higher concentrations of trypsin, and indeed is not completely abolished even by the highest levels of trypsin we have used. We therefore conclude that the structural distinction of active chromatin, recognized by DNase I, does not reside at the level of higher order structure.  相似文献   

2.
In the presence of 3 mM MgCl2 DNase I cleavage of bulk, globin and ovalbumin gene chromatin in chicken erythrocyte nuclei generates fragments which are multiples of a double-nucleosome repeat. However, in addition to the dinucleosomal periodicity beta-globin gene chromatin was fragmented into multiples of a 100 b.p. interval which is characteristic for partially unfolded chromatin. This distinction correlates with higher sensitivity of beta-globin domain to DNase I and DNase II as compared to the inactive ovalbumin gene. At 0.7 mM MgCl2 where these DNases fragment bulk chromatin into series of fragments with a 100 b.p. interval, the difference in digestibility of the investigated genes is dramatically decreased. When chromatin has been decondensed by incubation of nuclei in 10 mM Tris-buffer, DNase II generates a typical nucleosomal repeat, and the differential nuclease sensitivity of the analyzed genes is not observed. The data suggest that higher nuclease sensitivity of potentially active genes is due to irregularities in higher order chromatin structure.  相似文献   

3.
4.
5.
J L Feng  J Irving  B Villeponteau 《Biochemistry》1991,30(19):4747-4752
Although it is well-known that active domains of chromatin have elevated DNase I sensitivity, it can be difficult to observe preferential sensitivity in many cell types. We show that the DNase I sensitivity of active chromatin is enhanced some 10-fold by treating nuclei with the phosphatase inhibitor p-(chloromercuri)benzenesulfonic acid (CMBS) whereas DNase I sensitivity in inactive domains is only 3-fold higher. We further show that CMBS-enhanced DNase I sensitivity is associated with at least two histone modifications. First, the negatively charged CMBS molecule becomes covalently attached to the thiol groups on histone H3. Second, histone H2A phosphorylation is significantly elevated in treated nuclei. The phosphorylation data along with other results point to the possibility that H2A phosphorylation plays a role in enhancing preferential DNase I sensitivity. Whatever the mechanism, CMBS treatment of nuclei followed by DNase I digestion provides a novel and reproducible assay for probing the chromatin structure of active domains.  相似文献   

6.
We have used Abelson murine leukemia virus (A-MuLV) transformed pre-B cell lines to test the hypothesis that the rearrangement potential of a developing B-lymphocyte is dependent on an "opening" of the chromatin structure surrounding immunoglobulin (Ig) genes, thus allowing accessibility to an Ig gene recombinase. The chromatin structures surrounding heavy (H), kappa (kappa), and lambda (lambda) chain constant-region genes were assessed by DNase I sensitivity in A-MuLV transformed cell lines capable of H, kappa or lambda gene rearrangement. Our results indicate that DNase I-sensitive chromatin structures of these Ig constant-region genes correlate closely with the ability of the genes to undergo recombination. We also find that the chromatin structure of an Ig constant-region locus becomes DNase I sensitive before any DNA rearrangement events occur.  相似文献   

7.
Pancreatic DNase I was used as a probe to study DNA-protein interactions in condensed and extended chromatin fractions isolated from Chinese hamster liver, and in human lymphocyte and mouse L cell metaphase chromosomes in situ. By studying the rate of digestion of chromatin DNA by DNase, we have previously shown that DNA in extended chromatin is more sensitive to DNase digestion than that in condensed chromatin. In the current investigation, we have examined whether this differential sensitivity of the chromatin fractions to DNase is due to differences in protein binding to DNA or differences in the degree of chromatin condensation. By “decondensing” the condensed chromatin and comparing its rate of digestion to that of untreated condensed and extended chromatin, it was found that differences in the degree of binding of proteins to DNA rather than the degree of condensation of the chromatin primarily determines the sensitivity of each fraction to DNase. Extraction of the various classes of chromosomal proteins, followed by DNase digestion of the residual chromatin revealed that both the histone and non-histone proteins protect the DNA in the chromatin fractions from DNase attack; however, the more tightly associated non-histones appear to be specifically responsible for the differential sensitivity of the chromatin fractions to DNase digestion. These non-histones may be more tightly associated with the DNA in condensed than in extended chromatin, thereby protecting the DNA in condensed chromatin against DNase attack to a greater extent than that in extended chromatin. When metaphase chromosomes were briefly digested with DNase in situ and subsequently stained with Feulgen reagent, incontrovertible C-banding and some G-banding was obtained. This DNaseinduced banding demonstrates that the DNA in C-band and possibly G-band regions is less accessible to DNase than that in the interband regions, and our biochemical data suggest that this differential accessibility is caused by differential DNA-protein binding such that the non-histones are more tightly coupled to the DNA in the G- and C-band regions than they are in the interbands. Differences in the binding of non-histones to DNA in different segments of the metaphase chromosome may be involved in the mechanism of G- and C-banding.  相似文献   

8.
Under appropriate conditions, up to 8.5% of the total acetate can be removed from the histones of isolated Tetrahymena macronuclei by an endogenous histone deacetylase activity. After in vitro deacetylation, the ribosomal genes are still preferentially digested by DNase I. These observations suggested that either the majority of histone-bound acetate is unnecessary to maintain the DNase I sensitive state or ribosomal chromatin (rChromatin) histones remain acetylated under these conditions. The characteristics of histones acetylation were studied in Tetrahymena rChromatin, which can be isolated in a relatively pure form. Histones associated with the presumably active, DNase I sensitive ribosomal genes have a high steady-state level of histone acetylation which, surprisingly, is maintained by very low acetate turnover rates.  相似文献   

9.
Studies on nuclease digestion of chromatin phosphorylated in vivo   总被引:1,自引:0,他引:1  
We have previously shown that, by culturing cells in hypertonic media, histone 2A becomes hyperphosphorylated (Pantazis, P., West, M. H. P., and Bonner, W. M. (1984) Mol. Cell. Biol. 4, 1186-1188). In the present study we have probed the effect of this histone modification on the overall chromatin structure by micrococcal nuclease and DNase I digestion. Although no significant quantitative differences in the extent of hydrolysis were observed between control and hyperphosphorylated chromatin by micrococcal nuclease, DNase I digested hyperphosphorylated chromatin at a 3- to 4-fold higher rate than unmodified chromatin.  相似文献   

10.
Nuclei from male Xenopus liver were digested extensively with DNase I and the residual amount of the four vitellogenin genes measured by hybridization with a moderate excess of vitellogenin cDNA. The saturation value was about twofold lower in chromatin isolated from liver cells of estrogen treated than from untreated males or from erythrocytes. Analyzing the disappearance of several defined restriction fragments specific for the A1 and A2 vitellogenin genes, after limited digestion with DNase I, suggested that the entire A1 and A2 vitellogenin genes are about twofold more sensitive to DNase I in chromatin of hepatocytes isolated from estrogen treated than from untreated males. Using the same assay no change in the DNase I sensitivity of the two vitellogenin genes in erythrocyte chromatin was observed. Analysis of the beta 1-globin and an albumin gene demonstrated that the DNase I sensitivity of these genes in both cell types is not altered by estrogen. All these data indicate that estrogen stimulation results in an increased DNase I sensitivity specific for the vitellogenin genes in hepatocytes.  相似文献   

11.
We have analysed the chromatin features of DNA regions encompassing human epsilon, G gamma, A gamma, delta and beta globin structural genes in fetal and adult erythroid cells on the one hand and adult lymphocytes on the other. Highly purified nuclei from these cells were submitted to DNase I digestion and the kinetic data were obtained from the percentage of residual hybridization of defined regions in Southern blots. Our results, as others have shown by different approaches, indicate that the structural genes of the beta-globin cluster are generally more sensitive to DNase I in the erythroid cells than in non-erythroid cells. Thus a domain of DNase I sensitivity related to the committed state is defined. In addition we show that within this DNase-I-sensitive beta cluster domain, individual genes of the cluster are arranged in subdomains of differential DNase I sensitivity, which correlate with their expression status. Furthermore the differential expression of the two fetal genes in the fetal stage is shown to be directly proportional to the degree of hypomethylation of these genes.  相似文献   

12.
The active beta-globin genes in chicken erythrocytes, like all active genes, reside in large chromatin domains which are preferentially sensitive to digestion by DNase I. We have recently proposed that the special structure of chromatin in active domains is maintained by torsional stress in the DNA (Villeponteau et al., Cell 39:469-478, 1984). This hypothesis predicts that nicking of the DNA within any such chromosomal domain in vivo will relax the DNA and lead to loss of the special DNase I-sensitive state. Here we have tested this prediction by using gamma irradiation and bleomycin treatment to cleave DNA within intact chicken embryo erythrocytes. Both treatments cause reversal of DNase I sensitivity. Moreover, reversal occurs at approximately one nick per 150 kilobase pairs for both agents despite their entirely unrelated modes of cell penetration and DNA attack. These results suggest that the domain of DNase I sensitivity surrounding the beta-globin genes comprises 150 kilobase pairs of chromatin under torsional stress and that a single DNA nick in this region is sufficient to reverse the DNase I sensitivity throughout the entire domain.  相似文献   

13.
Chromatin remodeling at the Ig loci prior to V(D)J recombination.   总被引:8,自引:0,他引:8  
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.  相似文献   

14.
M J Scott  M J Tsai  B W O'Malley 《Biochemistry》1987,26(21):6831-6840
The location of CR1 middle repetitive sequences within or near the boundaries of the ovalbumin DNase I sensitive domain has suggested that CR1 sequences may play a role in defining transition regions of DNase I sensitivity in hen oviduct nuclei. We have examined this apparent relationship of CR1 sequences and transitions of chromatin structure by determining the DNase I sensitivity in oviduct nuclei of a 47-kilobase region that contains five CR1 sequences and the transcribed ovomucoid and ovoinhibitor genes. We find that three of the CR1 sequences occur within a broad transition region of decreasing DNase I sensitivity downstream of the ovomucoid gene. Another CR1 is in a region of decreased DNase I sensitivity within the ovoinhibitor gene. The fifth CR1 sequence is in a DNase I sensitive region between the two genes but which is less sensitive to DNase I digestion than the region immediately upstream from the ovomucoid gene. Thus, the CR1 sequences occur within regions of reduced relative DNase I sensitivity, suggesting that CR1s could facilitate the formation of a chromatin conformation that is less sensitive to DNase I digestion. Unexpectedly, the noncoding strand of sequences within and immediately adjacent to the 5' end of the actively transcribed ovomucoid and ovalbumin genes was less sensitive to DNase I digestion than their respective coding strands.  相似文献   

15.
The chromatin of several genes was assayed for sensitivity to DNAase I and for solubility as polynucleosomes in 0.15 M NaCl. The degree of solubility of chromatin fragments as polynucleosomes in 0.15 M NaCl correlates well with the sensitivity to DNAase I for several genes. Chromatin of repressed, housekeeping and erythroid-specific genes can be distinguished as distinct groups by the degree to which they display these properties. NaCl precipitation of chromatin fragments stripped and then reconstituted with varying quantities of H1 and H5 (linker) histones indicate that the polynucleosomes of erythroid-specific genes have altered interaction with these histones. Linker histones interacted with bulk chromatin and in the chromatin of the repressed ovalbumin and vitellogenin genes to form salt precipitable structures. Chromatin of erythroid-specific genes (histone H5 and beta-globin) as well as that of the histone H2A.F gene was resistant to linker histone induced precipitation.  相似文献   

16.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

17.
The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.  相似文献   

18.
The rearrangement of a variable (V) and a constant (C) gene appears to be a necessary prerequisite for immunoglobulin gene expression. Multiple different rearranged kappa genes were found in several mouse myelomas, although these cells produce only one type of kappa chain [Wilson, R., Miller, J., & Storb, U. (1979) Biochemistry 18, 5013--5021]. It is therefore of interest to understand how only one allele within a lymphoid cell becomes expressed, while the other allele remains nonfunctional ("allelic exclusion"). We have studied the chromatin conformation of kappa genes by making use of the preferential digestion of potentially active genes by DNase I described, for example, for globin genes [Weintraub, H., & Groudine, M. (1976) Science (Washington, D.C.) 193, 848--856]. The DNase I sensitivity of kappa genes in myeloma tumors, in a B cell lymphoma, and in liver was determined by hybridization with DNA on Southern blots. It was found that rearranged C kappa genes are DNase I sensitive in myelomas in which several kappa genes are rearranged, regardless of whether the rearranged genes code for the kappa chains synthesized by the cell. Furthermore, the C kappa gene in germline configuration is also DNase I sensitive in a B cell lymphoma; i.e., it is in the same chromatin state as the rearranged C kappa gene which probably codes for the kappa chains produced by the cell. The altered chromatin state appears to be localized: V kappa genes in germline context are not DNase I sensitive in myeloma or B lymphoma cells while C kappa genes present in a kappa gene cluster on the same chromosomes are sensitive. When rearranged, however, the V kappa genes are as sensitive to DNase I as are rearranged C kappa genes. V lambda and C lambda genes are not DNase I sensitive in kappa myelomas. Thus, commitment to kappa gene expression is apparently correlated with a chromatin conformation which confers increased DNase I sensitivity to the DNA in the vicinity of all C kappa genes in the cell. "Allelic exclusion" does not operate on the level of chromatin conformation which can be detected by altered DNase I sensitivity.  相似文献   

19.
The DNase I sensitivity of three different chromatin regions in mouse testicular cells was analysed by in situ nick translation with biotin-dUTP combined with various counterstaining techniques. The regions were: (i) the constitutive centromeric heterochromatin, (ii) an interstitial C-band positive insertion on chromosome 1, Is(HSR1;C5)1Lub, and (iii) the chromatin containing rDNA (designated nucleolar chromatin herein). Incorporated biotin was detected either by the horseradish peroxidase reaction with diaminobenzidine (DAB) or the alkaline phosphatase reaction with fast red. The latter resulted in a water insoluble red precipitate, which was easily removable by any organic solution thus allowing the application of various counterstaining protocols. DNase I sensitivity of the three chromatin regions was screened in different cell types of the mouse testis. The interstitial Is(HSR) region was highly DNase I sensitive when it was recognizable by strong mithramycin fluorescence. The centromeric heterochromatin was DNase I resistant when it was compacted into microscopically visible chromosomal structures (mitosis, pachytene, metaphase I and II). In interphase nuclei from Sertoli cells and spermatogonia it became highly DNase I sensitive. In round spermatids it displayed medium DNase I sensitivity. Nucleolar chromatin was not labelled by in situ nick translation when silver staining demonstrated strong protein production. Sperm cells were highly DNase I sensitive from stages 11 to 15, but resistant as mature spermatozoa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号