首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Antibacterial effects of the electromagnetic irradiation (EMI) of 51.8 and 53 GHz frequencies with low intensity (the flux capacity of 0.06 mW/cm(2)) and non-thermal action were investigated upon direct irradiation of E. coli K12. Significant decrease in bacterial growth rate and in the number of viable cells, marked change in H(+) and K(+) transport across membrane were shown. Subsequent addition of kanamycin or ceftriaxone (15 or 0.4 μM, respectively) enhanced the effects of irradiation. This was maximally achieved at the frequency of 53 GHz. These all might reveal membrane as probable target for antibacterial effects. Apparently, the action of EMI on bacteria might lead to changed membrane properties and to antibiotic resistance. The results should improve using extremely high frequency EMI in combination with antibiotics in biotechnology, therapeutic practice, and food industry.  相似文献   

2.
It was ascertained that one-hour exposure of Enterococcus hirae ATCC9790 bacteria grown under anaerobic condition during sugar (glucose) fermentation to coherent electromagnetic irradiation (EMI) of 51.8 and 53.0 GHz frequencies or millimeter waves (5.79 and 5.66 mm wavelengths) of low-intensity (flux capacity of 0.06 mW/cm2) caused a significant decrease in energy-dependent H+ and K+ transports across the membranes of whole cells. Therewith, K+ influx into cells was appreciably less at the frequency of 53.0 GHz. Likewise, a significant decrease of total and N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity of the membrane vesicles occurred after EMI of 51.8 and 53.0 GHz. These results indicated the input of membranous changes in bacterial action of low intensity extremely high frequency EMI, when the F0F1-ATPase was probably playing a key role. Additionally, the enhancement of the effects of antibiotics — ceftriaxone, kanamycin and ampicillin at their minimal inhibitory concentrations (100, 200 and 1.4 μM, correspondingly) on the bacterial growth by these irradiations was shown. Also, combined action of EMI and antibiotics depressed strongly H+ and K+ fluxes across membrane. Especially, H+ flux was more sensitive to the action of ceftriaxone, but K+ flux was sensitive to kanamycin. All these made the assumption that EMI of 51.8 and 53.0 GHz frequencies, especially 53.0 GHz, was followed by change in bacterial sensitivity toward antibiotics that was more obvious with ceftriaxone and ampicillin.  相似文献   

3.
Escherichia coli K-12(λ) was sensitive toward low-intensity (non-thermal, flux capacity 0.06 mW cm−2) electromagnetic irradiation (EMI) of extremely high frequency—70.6 and 73 GHz. 1 h exposure to EMI markedly depressed growth and cell viability of bacteria. Membrane-associated processes—total H+ efflux and H2 evaluation by whole cells during glucose fermentation were shown to be lowered as well. At the same time, the F0F1-ATPase activity of membrane vesicles was little depressed with 70.6 GHz irradiation only. This finding was in conformity with non-changed N,N′-dicyclohexylcarbodiimide-sensitive H+ efflux. Furthermore, for understanding the different frequencies action mechanisms, the effects of antibiotics (chloramphenicol, ceftriaxone, kanamycin, and tetracycline) on irradiated cells growth and survival were determined. EMI with the frequencies of 70.6 and 73 GHz as with 51.8 and 53.0 GHz enhanced the sensitivity of bacteria toward antibiotics, but comparison revealed that each frequency had a different portion. Probably, EMI of specific frequency triggered changes in biological processes and afterward in growth and viability of bacteria, creating conditions when the action of antibiotics became facilitated.  相似文献   

4.
The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.  相似文献   

5.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

6.
Ouabain-sensitive uptake of 86Rb+ (an analogue of K+) was enhanced in L-cells that had been treated with 25-hydroxycholesterol or 7-ketocholesterol in order to deplete their sterol concentration. Ouabain-insensitive Rb+ efflux also increased in the sterol-depleted cells and the intracellular concentration of K+ diminished while the concentration of Na+ increased. All of these effects of 25-hydroxycholesterol were counteracted by the addition of mevalonate to the culture medium. Despite the evidence for increased active Rb+ transport in the 25-hydroxycholesterol-treated cells, the level of sodium and potassium ion-activated adenosine triphosphatase ((Na+ + K+)-activated ATPase) activity measured in homogenates and plasma membrane preparations from the treated cells was not significantly different from the control values. Rb+ uptake was more sensitive to ouabain inhibition in sterol-depleted cells than in control cells, although ATPase activity in plasma membrane fractions isolated from treated cells was not more sensitive to ouabain inhibition than was that from control cells. It is possible that the ability of the oxygenated sterols to inhibit DNA synthesis and cell division (Kandutsch, A. A., and Chen, H. W. (1977) J. Biol. Chem. 252, 409-415) is related to their effects upon cellular ion transport.  相似文献   

7.
The effects of ketoconazole and miconazole uptake on K(+) transport and the internal pH of Saccharomyces cerevisiae were studied. The uptake of both drugs was very fast, linear with concentration and not dependent on glucose, indicating entrance by diffusion and concentrating inside. Low (5.0μM) to intermediate concentrations (40μM) of both drugs produced a glucose-dependent K(+) efflux; higher ones also produced a small influx of protons, probably through a K(+)/H(+) exchanger, resulting in a decrease of the internal pH of the cells and the efflux of material absorbing at 260nm and phosphate. The cell membrane was not permeabilized. The K(+) efflux with miconazole was dependent directly on the medium pH. This efflux results in an increased membrane potential, responsible for an increased Ca(2+) uptake and other effects. These effects were not observed with two triazolic antifungals. A decrease of the Zeta (ζ) potential was observed at low concentrations of miconazole. Although the main effect of these antifungals is the inhibition of ergosterol synthesis, K(+) efflux is an important additional effect to be considered in their therapeutic use. Under certain conditions, the use of single mutants of several transporters involved in the movements of K(+) allowed to identify the participation of several antiporters in the efflux of the cation.  相似文献   

8.
Culham DE  Romantsov T  Wood JM 《Biochemistry》2008,47(31):8176-8185
H (+)-solute symporters ProP and LacY are members of the major facilitator superfamily. ProP mediates osmoprotectant (e.g., proline) accumulation, whereas LacY transports the nutrient lactose. The roles of K (+), H (+), H 2O, and DeltaPsi in H (+)-proline and H (+)-lactose symport were compared using right-side-out cytoplasmic membrane vesicles (MVs) from bacteria expressing both transporters and proteoliposomes (PRLs) reconstituted with pure ProP-His 6. ProP activity increased as LacY activity decreased when osmotic stress (increasing osmolality) was imposed on MVs. The activities of both transporters decreased to similar extents when Na (+) replaced K (+) in MV preparations. Thus, K (+) did not specifically control ProP activity. As with LacY, an increasing extravesicular pH stimulated ProP-mediated proline efflux much more than ProP-mediated proline exchange from de-energized MVs. In contrast to that of LacY, ProP-mediated exchange was only 2-fold faster than ProP-mediated efflux and was inhibited by respiration. In the absence of the protonmotive force (Deltamu H (+) ), efflux of lactose from MVs was much more sensitive to increasing osmolality than lactose exchange. Thus, H 2O may be directly involved in proton transport via LacY. In the absence of Deltamu H (+) , proline efflux and exchange from MVs were osmolality-independent. In PRLs with a DeltapH of 1 (lumen alkaline), ProP-His 6 was inactive when the membrane potential (DeltaPsi) was zero, was active but insensitive to osmolality when DeltaPsi was -100 mV, and became osmolality-sensitive as DeltaPsi increased further to -137 mV. ProP-His 6 had the same membrane orientation in PRLs as in cells and MVs. ProP switches among "off", "on", and "osmolality-sensitive" states as the membrane potential increases. Kinetic parameters determined in the absence of Deltamu H (+) represent a ProP population that is predominantly off.  相似文献   

9.
Salt tolerance in Saccharomyces cerevisiae is a complex trait, involving regulation of membrane polarization, Na(+) efflux and sequestration of Na(+) in the vacuole. Since transmembrane transport energized by H(+)-adenosine triphosphatases (ATPases) is common to all of these tolerance mechanisms, the objective of this study was to characterize the responses of the plasma membrane H(+)-ATPase, vacuolar H(+)-ATPase and mitochondrial F(1)F(0)-ATPase to NaCl stress. We hypothesized that since the vacuolar ATPase is responsible for generating the proton motive force required for import of cations (such as Na(+)) into the vacuole, strains lacking this activity should be hypersensitive to NaCl. We found that strains lacking vacuolar ATPase activity were in fact hypersensitive to NaCl, while strains lacking ATP synthase were not. This effect was specific to the ionic component of NaCl stress, since the mutant strains were indistinguishable from wild-type and complemented strains in the presence of sorbitol.  相似文献   

10.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

11.
The objective of this study was to investigate the effects of insulin and insulin-like growth factor I on transepithelial Na(+) transport across porcine glandular endometrial epithelial cells grown in primary culture. Insulin and insulin-like growth factor I acutely stimulated Na(+) transport two- to threefold by increasing Na(+)-K(+) ATPase transport activity and basolateral membrane K(+) conductance without increasing the apical membrane amiloride-sensitive Na(+) conductance. Long-term exposure to insulin for 4 d resulted in enhanced Na(+) absorption with a further increase in Na(+)-K(+) ATPase transport activity and an increase in apical membrane amiloride-sensitive Na(+) conductance. The effect of insulin on the Na(+)-K(+) ATPase was the result of an increase in V(max) for extracellular K(+) and intracellular Na(+), and an increase in affinity of the pump for Na(+). Immunohistochemical localization along with Western blot analysis of cultured porcine endometrial epithelial cells revealed the presence of alpha-1 and alpha-2 isoforms, but not the alpha-3 isoform of Na(+)-K(+) ATPase, which did not change in the presence of insulin. Insulin-stimulated Na(+) transport was inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester [HNMPA-(AM)(3)], a specific inhibitor of insulin receptor tyrosine kinase activity, suggesting that the regulation of Na(+) transport by insulin involves receptor autophosphorylation. Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase as well as okadaic acid and calyculin A, inhibitors of protein phosphatase activity, also blocked the insulin-stimulated increase in short circuit and pump currents, suggesting that activation of phosphatidylinositol 3-kinase and subsequent stimulation of a protein phosphatase mediates the action of insulin on Na(+)-K(+) ATPase activation.  相似文献   

12.
The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.  相似文献   

13.
Turgor pressure is a cellular parameter, important for a range of physiological processes in plants, like cell elongation, gas exchange and gravitropic/phototropic bending. Regulation of turgor pressure involves ion and water transport at the expense of metabolic energy (ATP). The primary pump in the plasma membrane (the H(+)-ATPase) is a key player in turgor regulation since it provides the driving force for ion uptake, followed by water influx through osmosis. Using the phytotoxin fusicoccin (a well-known activator of the ATPase) as a tool, 14-3-3 proteins were identified as regulators of the H(+)-ATPase. Since fusicoccin has a dramatic effect on K(+) accumulation and cellular respiration as well, we studied whether 14-3-3 proteins play a role in the regulation of the mitochondrial F(0)F(1)-ATP synthase and ion channels in the vacuolar and plasma membranes. Besides the plasma membrane H(+)-ATPase, we have identified thus far at least four other transport proteins that are regulated by 14-3-3 proteins. The mechanism of regulation will be described and the possibility that 14-3-3 proteins act as coordinators of ion transporters with varied but interdependent functions will be discussed.  相似文献   

14.
The effects of secondary metabolites produced by waterlogged soils on net K(+), H(+), and Ca(2+) fluxes were studied in the mature zone of roots of two barley (Hordeum vulgare) cultivars contrasting in their waterlogging (WL) tolerance using the noninvasive microelectrode ion flux measuring technique. In WL-sensitive variety 'Naso Nijo', all three lower monocarboxylic acids (formic, acetic, and propionic acids) and three phenolic acids (benzoic, 2-hydroxybenzoic, 4-hydroxybenzoic acids) caused a substantial shift toward steady K(+) efflux, accompanied by an immediate net influx of H(+). Detrimental effects of secondary metabolites on K(+) homeostasis in root cells were absent in WL-tolerant 'TX' variety. Root treatment with Mn(2+) caused only a temporary K(+) loss that returned to the initial level 10 min after treatment. Phenolic acids slightly increased Ca(2+) influx immediately after treatment, while other metabolites tested resulted in transient Ca(2+) efflux from the root. In the long-term (24 h) treatment, all metabolites tested significantly reduced K(+) uptake and the adverse effects of phenolic acids were smaller than for monocarboxylic acids and Mn(2+). Treatment with monocarboxylic acids for 24 h shifted H(+) from net efflux to net influx, while all three phenolic acids did not cause significant effects compared with the control. Based on results of pharmacological experiments and membrane potential measurements, a model explaining the effects of secondary metabolites on membrane transport activity is proposed. We also suggest that plant tolerance to these secondary metabolites could be considered a useful trait in breeding programs.  相似文献   

15.
ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide and dependent on K+ content in medium is observed only in anaerobically grown Escherichia coli and as the analysis of mutants with defects in different subunits of (F0F1) H+-ATPase and in potassium transport shows only under the structural integrity of both F0F1 and K+-ionophore (the Trk system). The obtained results confirm the data on the H+/K+-exchange and indicate that the F0F1 and Trk systems in anaerobically grown bacteria unite into the same membrane supercomplex inside which the direct energy transfer occurs without a mediation of delta-mu H+.  相似文献   

16.
The effects of low-intensity electromagnetic irradiation (EMI) with the frequencies of 51.8 and 53 GHz on Lactobacillus acidophilus growth and survival were revealed. These effects were compared with antibacterial effects of antibiotic ceftazidime. Decrease in bacterial growth rate by EMI was comparable with the inhibitory effect of ceftazidime (minimal inhibitory concentration—16 μM) and no enhanced action was observed with combined effects of EMI and the antibiotic. However, EMI-enhanced antibiotic inhibitory effect on bacterial survival. The kinetics of the bacterial suspension oxidation–reduction potential up to 24 h of the growth was changed by EMI and ceftazidime. The changes were more strongly expressed by combined effects of EMI and antibiotic especially up to 12 h. Moreover, EMI did not change overall energy (glucose)-dependent H+ efflux across the membrane but it increased N,N′-dicyclohexylcarbodiimide (DCCD)-inhibited H+ efflux. In contrast, this EMI in combination with ceftazidime decreased DCCD-sensitive H+ efflux. Low-intensity EMI had inhibitory effect on L. acidophilus bacterial growth and survival. The effect on bacterial survival was more significant in the combination with ceftazidime. The H+-translocating F 0 F 1-ATPase, for which DCCD is specific inhibitor, might be a target for EMI and ceftazidime. The revealed bactericide effects on L. acidophilus can be applied in biotechnology, food producing and safety technology.  相似文献   

17.
1. Models are presented for (a) HK ATPase acting in the presence of K and Cl conductances; (b) a pH regulatory system where Na/H exchange is regulated directly by second messenger and the anion exchanger is activated secondarily to the rise in cell pH; (c) vesicle fusion and K and Cl conductances activation in the gastric parietal cell. 2. It is suggested that H transport involves protonation and deprotonation of histidine groups as well as the motion of these groups relative to the membrane barrier. 3. The HK ATPase would have a voltage generating and voltage sensitive step in the forward direction. 4. Given net electroneutrality the K transport reaction would also be charge translocating and voltage sensitive.  相似文献   

18.
We have studied the links between the mechanisms of Na(+), K(+) and H(+) movements in glycolysing Mycoplasma mycoides var. Capri cells. In the light of the results reported in the preceding paper [Benyoucef, Rigaud & Leblanc (1982) Biochem. J.208, 529-538], we investigated certain properties of the membrane-bound ATPase of Mycoplasma cells, with special reference to its ionic requirements and sensitivity to specific inhibitors. Our findings show, first, that, although Na(+) stimulated ATPase activity, K(+) did not affect it, and, secondly, that NN'-dicyclocarboidi-imide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD) were potent inhibitors of the basal ATPase activity, which was unaffected by vanadate and ouabain. We also investigated the movements of Na(+) and H(+) under the experimental conditions applied to the study of the K(+) uptake reported in the preceding paper, and found that when ;Na(+)-loaded cells' previously equilibrated with (22)Na(+) were diluted in a sodium-free medium, addition of glucose induced a rapid efflux of (22)Na(+). This energy-dependent efflux was independent of the presence of KCl in the medium. Studies of the changes in internal pH by 9-aminoacridine fluorescence or [(14)C]methylamine distribution indicated that the movement of Na(+) was coupled to that of protons moving in the opposite direction, a finding that supports the presence of an Na(+)/H(+) antiport. When Na(+)-loaded cells are diluted in an Na(+)-rich medium the Na(+)/H(+) antiport is still active, but cannot decrease the intracellular Na(+) concentration. Under such conditions, net (22)Na(+) extrusion is specifically dependent on the presence of K(+) in the medium. The present results and those derived from the study of K(+) accumulation (the preceding paper) can be rationalized by assuming that Mycoplasma mycoides var. Capri cells contain two transport systems for Na(+) extrusion: an Na(+)/H(+) antiport and an ATP-consuming Na(+)/K(+)-exchange system.  相似文献   

19.
Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH carries out a mixed-acid fermentation resulting in the production of formate among the other products that can be excreted or further oxidized to H(2) and CO(2). H(2) production is largely dependent on formate dehydrogenase H and hydrogenases 3 and 4 constituting two formate hydrogen lyases, and on the F(0)F(1)-ATPase. In this study, it has been shown that formate markedly increased ATPase activity in membrane vesicles. This activity was significantly (1.8-fold) stimulated by 100mM K(+) and inhibited by N,N(')-dicyclohexylcarbodiimide and sodium azide. The increase in ATPase activity was absent in atp, trkA, and hyf but not in hyc mutants. ATPase activity was also markedly increased by formate when bacteria were fermenting glucose with external formate (30mM) in the growth medium. However this activity was not stimulated by K(+) and absent in atp and hyc but not in hyf mutants. The effects of formate on ATPase activity disappeared when cells were performing anaerobic (nitrate/nitrite) or aerobic respiration. These results suggest that the F(0)F(1)-ATPase activity is dependent on K(+) uptake TrkA system and hydrogenase 4, and on hydrogenase 3 when cells are fermenting glucose in the absence and presence of external formate, respectively.  相似文献   

20.
Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O)?ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity. By patch clamping submitochondrial vesicles enriched in F(1)F(O) ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-x(L) activity increases the membrane leak conductance. In addition, recombinant Bcl-x(L) protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-x(L) decreases the level of F(1)F(O) enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-x(L)-expressing?neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号