首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

3.
4.
Diabetes mellitus (DM) is associated with multiple skeletal disorders, and vitamin D may play a functional role in the preservation of glucose tolerance. However, the relationship between vitamin D deficiency and DM is not well known. The aim of this study was to investigate the potential molecular link between 1,25(OH)(2)D(3) regulation and glucose homeostasis. Rat primary osteoblasts were cultured in different conditioned medium: normal glucose, high glucose, high glucose and insulin, high glucose and 1,25(OH)(2)D(3), high glucose and insulin and 1,25(OH)(2)D(3). The activity of osteoblasts was measured by cell viability, alkaline phosphatase and osteocalcin assay. The potential mechanism of how 1,25(OH)(2)D(3) affect insulin sensitivity was investigated by the assay of insulin receptor (IR) and vitamin D receptor (VDR) expression, and undercarboxylated osteocalcin (ucOC) level. The combined treatment has the strongest effect of inhibiting the deleterious effects induced by high glucose on osteoblasts, and it promoted the %ucOC value to approximately 40%, which is much higher than that in high glucose without treatment. Levels of IR and VDR of osteoblasts in combined treatment culture increased significantly compared with that in high glucose without treatment. So maybe 1,25(OH)(2)D(3) promotes insulin sensitivity of osteoblasts by activating insulin signaling and simultaneously stimulating ucOC secretion, which in turn regulate insulin production and sensitivity. 1,25(OH)(2)D(3) might be beneficial not only for diabetes, but also, for osteoporosis by promoting bone formation.  相似文献   

5.
The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3).  相似文献   

6.
7.
Targeted deletion of genes encoding the 1,25-dihydroxyVitamin D [1,25(OH)(2)D]-synthesizing enzyme, 25 hydroxyVitamin D-1alpha-hydroxylase [1alpha(OH)ase or CYP27B1], and of the nuclear receptor for 1,25(OH)(2)D, the Vitamin D receptor (VDR), have provided useful mouse models of the inherited human diseases, Vitamin D-dependent rickets types I and II. We employed these models and double null mutants to examine the effects of calcium and of the 1,25(OH)(2)D/VDR system on skeletal and calcium homeostasis. Optimal dietary calcium absorption required both 1,25(OH)(2)D and the VDR. Skeletal mineralization was dependent on adequate ambient calcium but did not directly require the 1,25(OH)(2)D/VDR system. Parathyroid hormone (PTH) secretion was also modulated primarily by ambient serum calcium but the enlarged parathyroid glands which the mutants exhibited and the widened cartilaginous growth plates could only be normalized by the combination of calcium and 1,25(OH)(2)D, apparently independently of the VDR. Optimal osteoclastic bone resorption and osteoblastic bone formation both required an intact 1,25(OH)(2)D/VDR apparatus. The results indicate that calcium cannot entirely substitute for Vitamin D in skeletal and mineral homeostasis but that the two agents have discrete and overlapping functions.  相似文献   

8.
The vitamin D endocrine system is important for skeletal homeostasis. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] impacts bone indirectly by promoting intestinal absorption of calcium and phosphate and directly by acting on osteoblasts and osteoclasts. Despite the direct actions of 1,25(OH)(2)D(3) in bone, relatively little is known of the mechanisms or target genes that are regulated by 1,25(OH)(2)D(3) in skeletal cells. Here, we identify semaphorin 3B (SEMA3B) as a 1,25(OH)(2)D(3)-stimulated gene in osteoblastic cells. Northern analysis revealed strong induction of SEMA3B mRNA by 1,25(OH)(2)D(3) in MG-63, ST-2, MC3T3, and primary osteoblastic cells. Moreover, differentiation of these osteogenic cells enhanced SEMA3B gene expression. Biological effects of SEMA3B in the skeletal system have not been reported. Here, we show that osteoblast-derived SEMA3B alters global skeletal homeostasis in intact animals and osteoblast function in cell culture. Osteoblast-targeted expression of SEMA3B in mice resulted in reduced bone mineral density and aberrant trabecular structure compared with nontransgenic littermates. Histomorphometry studies indicated that this was likely due to increased osteoclast numbers and activity. Indeed, primary osteoblasts obtained from SEMA3B transgenic mice stimulated osteoclastogenesis to a greater extent than nontransgenic osteoblasts. This study establishes that SEMA3B is a 1,25(OH)(2)D(3)-induced gene in osteoblasts and that osteoblast-derived SEMA3B impacts skeletal biology in vitro and in vivo. Collectively, these studies support a putative role for SEMA3B as an osteoblast protein that regulates bone mass and skeletal homeostasis.  相似文献   

9.
Both calcium and 1,25(OH)(2)D promote the differentiation of keratinocytes in vitro. The autocrine or paracrine production of 1,25(OH)(2)D by keratinocytes combined with the critical role of the epidermal calcium gradient in regulating keratinocyte differentiation in vivo suggest the physiologic importance of this interaction. The interactions occur at a number of levels. Calcium and 1,25(OH)(2)D synergistically induce involucrin, a protein critical for cornified envelope formation. The involucrin promoter contains an AP-1 site essential for calcium and 1,25(OH)(2)D induction and an adjacent VDRE essential for 1,25(OH)(2)D but not calcium induction. Calcium regulates coactivator complexes that bind to the Vitamin D receptor (VDR). Nuclear extracts from cells grown in low calcium contain an abundance of DRIP(205), whereas calcium induced differentiation leads to reduced DRIP(205) and increased SRC 3 which replaces DRIP in its binding to the VDR. In vivo models support the importance of 1,25(OH)(2)D-calcium interactions in epidermal differentiation. The epidermis of 1alphaOHase null mice fails to form a normal calcium gradient, has reduced expression of proteins critical for barrier function, and shows little recovery of the permeability barrier when disrupted. Thus in vivo and in vitro, calcium and 1,25(OH)(2)D interact at multiple levels to regulate epidermal differentiation.  相似文献   

10.
11.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

12.
13.
We have used in situ hybridization to evaluate the effects of 1,25 dihydroxyvitamin D3 (1,25 (OH)2 D3) on the expression of mRNA for bone-matrix proteins and to determine whether mature osteoblasts respond differently to 1,25 (OH)2 D3 than younger, newly differentiated osteoblasts. Rat calvaria cells were cultured for 7, 12, 15, and 19 days to obtain a range of nodules from very young to very mature. At each time point, some cultures were treated with 10 nM 1,25 (OH)2 D3 for 24 h prior to fixation. In control cultures, type-I collagen mRNA was detectable in osteoblastic cells in very young nodules and increased with increasing maturity of the nodules and the osteoblasts lining them. The bone sialoprotein mRNA signal was weak in young osteoblasts, increased in older osteoblasts, and decreased in mature osteoblasts. Weak osteocalcin and osteopontin signals were seen only in osteoblasts of intermediate and mature nodules. 1,25 (OH)2 D3 treatment markedly upregulated osteocalcin and osteopontin mRNAs and downregulated mRNA levels of bone sialoprotein and, to a lesser extent, type-I collagen in both young and mature osteoblasts. However, a marked diversity of signal levels for bone sialoprotein, osteocalcin, and osteopontin existed between neighboring mature osteoblasts, particularly after 1,25 (OH)2 D3 treatment, which may therefore selectively affect mature osteoblasts, depending on their differentiation status or functional stage of activity.  相似文献   

14.
15.
The vitamin D receptor (VDR) is present in mammary gland, and VDR ablation is associated with accelerated glandular development during puberty. VDR is a nuclear receptor whose ligand, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] is generated after metabolic activation of vitamin D by specific vitamin D hydroxylases. In these studies, we demonstrate that both the VDR and the vitamin D 1-alpha hydroxylase (CYP27B1), which produces 1,25-(OH)(2)D are present in mammary gland and dynamically regulated during pregnancy, lactation, and involution. Furthermore, we show that mice lacking VDR exhibit accelerated lobuloalveolar development and premature casein expression during pregnancy and delayed postlactational involution compared with mice with functional VDR. The delay in mammary gland regression after weaning of VDR knockout mice is associated with impaired apoptosis as demonstrated by reductions in terminal deoxynucleotidyl transferase-mediated deoxyuridine nick-end labeling staining, caspase-3 activation and Bax induction. Under the conditions used in this study, VDR ablation was not associated with hypocalcemia, suggesting that altered mammary gland development in the absence of the VDR is not related to disturbances in calcium homeostasis. Furthermore, in the setting of normocalcemia, VDR ablation does not affect milk protein or calcium content. These studies suggest that the VDR contributes to mammary cell turnover during the reproductive cycle, and its effects may be mediated via both endocrine and autocrine signaling pathways. Unlike many mammary regulatory factors that exert transient, stage-specific effects, VDR signaling impacts on mammary gland biology during all phases of the reproductive cycle.  相似文献   

16.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, mediates antitumor effects in various cancers. The expression of key players in vitamin D signaling in thyroid tumors was investigated. Vitamin D receptor (VDR) and CYP27B1 and CYP24A1 (respectively activating and catabolizing vitamin D) expression was studied (RT-PCR, immunohistochemistry) in normal thyroid, follicular adenoma (FA), differentiated thyroid cancer (DTC) consisting of the papillary (PTC) and follicular (FTC) subtype, and anaplastic thyroid cancer (ATC). VDR, CYP27B1, and CYP24A1 expression was increased in FA and DTC compared with normal thyroid. However, in PTC with lymph node metastasis, VDR and CYP24A1 were decreased compared with non-metastasized PTC. In ATC, VDR expression was often lost, whereas CYP27B1/CYP24A1 expression was comparable to DTC. Moreover, ATC with high Ki67 expression (>30%) or distant metastases at diagnosis was characterized by more negative VDR/CYP24A1/CYP27B1 staining. In conclusion, increased expression of key players involved in local 1,25(OH)(2)D(3) signaling was demonstrated in benign and differentiated malignant thyroid tumors, but a decrease was observed for local nodal and especially distant metastasis, suggesting a local antitumor response of 1,25(OH)(2)D(3) in early cancer stages. These findings advocate further studies with 1,25(OH)(2)D(3) and analogs in persistent and recurrent iodine-refractory DTC.  相似文献   

17.
The active metabolite of vitamin D (1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))) is known to modulate the immune response in Th1 cell-directed diseases. To investigate the role of vitamin D in Th2 cell-directed diseases, experimental allergic asthma was induced in vitamin D receptor (VDR) knockout and in wild-type (WT) mice. As expected, WT mice developed symptoms of airway inflammation with an influx of eosinophils, elevated Th2 cytokine levels, mucous production, and airway hyperresponsiveness. The administration of 1,25(OH)(2)D(3) had no effect on asthma severity. The only discernable effect of 1,25(OH)(2)D(3) on experimental allergic asthma in WT mice was an increased expression of two Th2-related genes (soluble CD23 and GATA-3) in lungs of BALB/c mice exposed to Ag through the nasal route only. By contrast, asthma-induced VDR knockout mice failed to develop airway inflammation, eosinophilia, or airway hyperresponsiveness, despite high IgE concentrations and elevated Th2 cytokines. The data suggest that although 1,25(OH)(2)D(3) induced these Th2-type genes, the treatment failed to have any affect on experimental asthma severity. However, VDR-deficient mice failed to develop experimental allergic asthma, suggesting an important role for the vitamin D endocrine system in the generation of Th2-driven inflammation in the lung.  相似文献   

18.
19.
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently.  相似文献   

20.
Despite recent advances in the understanding of the role of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in the CNS, the mechanism of action remains obscure. We demonstrate that some 1,25-(OH)(2)D(3) receptor (VDR) is localized in the cell nucleus in specialized microdomains enriched in sphingomyelin and cholesterol; the integrity of these microdomains is necessary for embryonic hippocampal cell differentiation. Sphingomyelinase (SMase) treatment reduces both VDR and labeled 1,25-(OH)(2)D(3) content in nuclear microdomains. We have previously shown that HN9.10e embryonic hippocampal cells differentiate when incubated with 100 nM 1,25-(OH)(2)D(3) in the presence of 10% fetal calf serum, while serum deprivation induces cell death. In this study, we have investigated whether conditions that alter lipid content of nuclear microdomains modify 1,25-(OH)(2)D(3)-induced differentiation. Serum deprivation activates SMase and modifies the composition of nuclear microdomains, which lose the 1,25-(OH)(2) vitamin D(3) receptor. The incubation of serum-deprived cells with 100 nM 1,25-(OH)(2)D(3) prevents differentiation. However, treatment with 400 nM 1,25-(OH)(2)D(3) during serum withdrawal increases the lipid content of the nuclear microdomains, allows the interaction of 1,25-(OH)(2)D(3) with its receptor, and results in differentiation. These results suggest the presence of VDR in nuclear microdomains is necessary for 1,25-(OH)(2)D(3)-induced differentiation in embryonic hippocampal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号