首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was previously shown that in strains of Bacillus subtilis bearing the trpE26 mutation a chromosome segment (from trpD to ilvA) is translocated to a position near the thr region. Further PBS1-mediated transduction data have now revealed that these strains also possess an inversion of part of the chromosome from the origin of replication, down to the tre locus on one side and the cysB locus on the other. These data concern evidence of linkage of tre-12- to markers in the translocation (hisH2, tyrA1, and metB3) as well as linkage of the cysB3 marker to thi-86, gly-133, and catA. They explain the previously observed absence of linkage of markers in the translocated segment to cysB3. The model proposed for the formation of merodiploids in trpE26 strains, which calls for the fusion of two genetic elements, is not incompatible with this new finding.  相似文献   

2.
The replication order of markers was studied in Bacillus subtilis strains bearing the trpE26 mutation by the use of the density transfer technique. An important difference in this order was observed in comparison with that of strain 168 T-. All markers tested of a chromosome segment extending from trpD to ilvA replicated early, after purB6 and before thr-5. Two markers flanking this region, trpE8 and citK7, replicated late as usual. The results suggested that this segment was shifted in trpE26 strains to a region closer to the origin of replication. PBS-1-mediated transduction crosses corroborated this hypothesis and revealed the position of the translocated segment. (i) Linkage was demonstrated for markers in the segment (hisH2, tryA1, met B3, ilvA2) to thr-5 and ald; (ii) aroB2 and citK7 were found to be linked; and (iii) linkage of cysB3 to thr-5 was lost in trpE26 strains. These findings made it possible to account for the characteristics of the trpE26 mutation and to propose a model explaining the fact that all trpE26+ transformants or transductants are merodiploid. The model calls for fusion of two genetic elements: two independent chromosomes, or two arms of a replicating structure. The resulting chromosome bears a long tandem duplication. Most of the features of this system of merodiploid formation can be interpreted by use of this model: the segregation pattern of the diploids, the stabilization of the unstable clones, and the length of the duplicated region. A relatively stable diploid strain was also studied by the density transfer technique. The data show that it remained diploid for the region corresponding to the translocated segment and are in agreement with the structure predicted by the model.  相似文献   

3.
Summary Simultaneous selection of transformants fortrpE26 and a second unlinked marker ofB. subtilis in many cases yields double heterogenotic clones. Several chromosome areas analyzed in this way found to be involved in the diploid condition. Diploids for areas on the left hand side oftrpE26 on the map (and as near as thearo B locus) are in general unstable while stable merodiploids can be obtained for areas on the right hand side of this marker (as far as theilvA locus). Merozygotes for regions other than the aromatic segment are also formed by transformation of already diploid (stable and unstable) clones. Stable diploids give rise to new heterogenotes only for markers on the right hand side oftrpE26. Through reversion of untransformed markers in unstable and stable diploids it was found that these clones are homodiploid for loci situated at a long distance from (or between) the areas which were involved in the transformation. This indicates that the diploid state covers a continuous segment of the chromosome, the length of which can be determined. The segregation pattern of unstable multiple merodiploids suggests that exchange of genetic material must take place between the two homologous regions. The data presented are in agreement with the hypothesis that the merodiploids possess a very long duplication on their chromosome. In the case of the stable clones this duplication is shorter.  相似文献   

4.
Chromosome rearrangements involved in the formation of merodiploid strains in the Bacillus subtilis 168-166 system were explained by postulating the existence of intrachromosomal homology regions. This working hypothesis was tested by analysing sequences and restriction patterns of the, as yet uncharacterized, junctions between chromosome segments undergoing rearrangements in parent, 168 trpC2 and 166 trpE26, as well as in derived merodiploid strains. Identification, at the Ia/Ib chromosome junction of both parent strains, of a 1.3 kb segment nearly identical to a segment of prophage SPbeta established the existence of one of the postulated homology sequences. Inspection of relevant junctions revealed that a set of different homology regions, derived from prophage SPbeta, plays a key role in the formation of so-called trpE30, trpE30+, as well as of new class I merodiploids. Analysis of junctions involved in the transfer of the trpE26 mutation, i.e. simultaneous translocation of chromosome segment C and rotation of the terminal relative to the origin moiety of the chromosome, did not confirm the presence of any sequence suitable for homologous recombination. We propose a model involving simultaneous introduction of four donor DNA molecules, each comprising a different relevant junction, and their pairing with the junction regions of the recipient chromosome. The resolution of this structure, resting on homologous recombination, would confer the donor chromosome structure to the recipient, achieving some kind of 'transstamping'. In addition, a rather regular pattern of inverse and direct short sequence repeats in regions flanking the breaking points could be correlated with the initial, X-ray-induced, rearrangement.  相似文献   

5.
The stage 0 sporulation locus spo0B has been mapped by transformation between the pheA and spoIVF loci. Analysis of the behavior of alleles of the spo0B locus in trpE26 merodiploid strains indicates that all of the known alleles of this locus comprise a single complementation group. The spoIVF88 mutation was found to reside in a separate complementation group. The chromosomal region surrounding and including the spo0B locus was cloned in the lambda vector Charon 4A. Extensive restriction endonuclease analyses of the inserts in these phage revealed that an EcoRI fragment of DNA of 2.3 kilobases had transforming activity for spo0B mutations. Examination of the physical and genetic maps of the locus suggested that the entire spo0B locus is contained within this fragment. Subcloning of restriction endonuclease fragments of the lambda inserts and transformation analyses allowed assignment of surrounding genetic loci to specific DNA fragments.  相似文献   

6.
A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.  相似文献   

7.
Genetic Studies of Recombining DNA in Pneumococcal Transformation   总被引:22,自引:0,他引:22  
The results of genetic fine structure experiments, performed on the amiA locus of Pneumococcus are summarized. The peculiar feature of transformation genetics is that a given donor marker mutation transforms with an efficiency characteristic of the mutated site. In spite of this difficulty, mapping procedures have been devised and quantitative recombination studies performed. It is concluded from these studies that transformation, in this locus, is the consequence of frequent, and essentially random exchanges occurring between donor DNA and the chromosomal DNA of the recipient cell. The average length of uninterrupted donor DNA polynucleotide strand which could be inserted into the chromosome of a transformed cell is estimated, from genetic data, to be probably not greater than 3·105 daltons (for a double-stranded insertion). It is proposed, on the basis of genetic evidence, that following essentially random exchanges between donor DNA and recipient chromosome, a revision process, specific for certain types of mutated sites, occurs. The revision process appears to remove preferentially donor DNA sequences from the primary recombinant structure, and allow repair along the chromosomal template, leading to low efficiency in the genetic integration of these sites. A mechanism for this "destruction-choice" process is presented, and evidence in support of this mechanism discussed.  相似文献   

8.
Transformation and transduction to tryptophan independence of strains of Bacillus subtilis carrying the "trpE26" chromosomal aberrations (a translocation and an inversion) with a "normal" 168 type strain as donor induce a tandem duplication of the thrA-ilvA region of the chromosome. The clones possessing this unstable duplication segregate besides the Trp- some stable Trp+ cells which retain only part of the duplication (the trpE-ilvA region) in nontandem configuration. Such clones may also be produced directly during the crosses. The genetic map of these clones (designated as class I stable merodiploids) was constructed: they possess the tranlocation and the inversion of the trpE26 parental strain. Another type of stable Trp+ clones (class II) also appears, although more rarely, in similar crosses. Studies on their genetic structure revealed that they are haploid for the trpE-ilvA region and carry a nontandem duplication of the thrA-trpE region. In these clones the cysB-tre region has the orientation of the 168 type strain. The duplications in both classes are stable, that of class I being more stable than that of class II where loss of one copy of the thrA-trpE region leads to about 1% haploid cells. Detailed genetic studies on heterozygous clones from both classes have shown exchange of alleles between copies of the nontandem duplications. Models are proposed for the formation of each class of merodiploids and for recombination events taking place in them. These models imply recombination at sequences of intrachromosomal homology and (or) introduction of heterologous juncions ("novel joints") by transformation or transduction.  相似文献   

9.
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally.  相似文献   

10.
Replication terminus of the Bacillus subtilis chromosome.   总被引:3,自引:1,他引:2       下载免费PDF全文
Bidirectional replication of the Bacillus subtilis chromosome terminates at a point on the circular chromosome which is symmetrically opposite to the replication origin. Since replication rates are similar in both "halves" of the chromosome, termination presumably occurs at the meeting point of the two replication forks. To investigate whether the DNA sequence of this region of the chromosome contributes to the termination event, we have determined the latest replicating region of a chromosome in which this DNA sequence is no longer symmetrically opposite to the origin. The merodiploid strain GSY1127 has a very large nontandem duplication (approximately 25% of the total chromosome length) in the left-hand half of the chromosome, so that size and symmetry of this chromosome are grossly different from those of normal strains. We have examined the replication order of genetic markers in this strain by measuring subtilis terminal marker for replication remains a terminal marker in the merodiploid, i.e., replicates later than a marker situated symmetrically opposite to the replication origin. These results were supported by replication orders determined by pulse-density transfer experiments during synchronous replication. The data obtained indicate that there is a preferred site for the termination of replication in the B. subtilis chromosome.  相似文献   

11.
Relative efficiencies of spontaneous Bacillus subtilis transformation for markers placed in different areas of the cell chromosome were studied. As donor of genetic material, an untransformable strain BD224 trpC2 thr5 rec4 was used during its early log-phase. It was found that for markers placed near points of origin and termination of the chromosome replication the relative transformation efficiencies are significantly lower than those in the case of transformation with DNA extracted from the same donor cells. If a contact of spontaneously released DNA with the recipient cells was delayed for about 60 minutes ("separate" experiment) this difference proved to be less pronounced for ade16 placed near the origin, but remained practically unchanged for metB placed near the termination point. The results obtained can be explained by permanent attachment of chromosome regions, carrying "origin" and "termination" points, to a cytoplasmic membrane. During spontaneously release of cellular genetic material, "origin" and "terminal" DNA fragments carrying ade16 and metB respectively, can retain the contact with components of cell membrane. Hence, their penetration in the recipient cell and (or) participation in recombination can be violated. The first of two fragments becomes free from structurating substances more easy.  相似文献   

12.
E. D. Jarvis  S. Cheng    R. Rudner 《Genetics》1990,126(4):785-797
Studies on the region upstream to ribosomal operon rrnD of Bacillus subtilis led to the characterization of two of the four chromosomal junctions involved in the rearrangements (a translocation and an inversion) of the strains carrying the trpE26 mutation. Genetic analysis, by integrative mapping, showed linkage of rrnD to cysB and hisA (both on segment A) in the trpE26-type strains. Physical analysis showed that the region upstream to rrnD is now linked to the trpE-ilvA chromosome segment as demonstrated by analyzing restriction site-polymorphism between 168 and trpE26-type strains. Similar experiments confirmed the previous genetic data on linkage in these areas in strains carrying novel rearrangements derived from the trpE26-type strains: stable merodiploids and inversions. The nucleotide sequence of the area 5' to rrnD in both types of strains (168 and trpE26), the region downstream of the citG gene and the region carrying the trpE26 mutation (made available to us by D. Henner) provided evidence for the molecular basis of the differences in structure, allowed the identification of the break points and revealed the presence of a polypurine region upstream to rrnD as seen in other systems in B. subtilis. No extensive homology was found between pairs of junctions so far sequenced. The models proposed by C. Anagnostopoulos for the role of DNA sequences of intrachromosomal homology involved in the transfer of the trpE26 mutation and the formation of novel arrangements require therefore reevaluation.  相似文献   

13.
A small fraction (about 0.5%) of the transformants for a particular marker of B. subtilis (ilvA4; most probably a deletion) were found to be relatively unstable merodiploids. They possess a redundancy of the metB–ilvA chromosome segment. When their DNA is used as donor in transformation a merodiploid condition for the whole of this segment is created in all ilvA4+ transformants. For several of the duplicated loci both copies often are of recipient strain origin. Markers originally belonging to different copies of the diploidized region can be contransferred in PBS1-mediated transduction. The data are well in agreement with the hypothesis that the merodiploids carry a tandem duplication. An alternative hypothesis which does not call for integration of the exogenote within the recipient chromosome was also considered. Models are proposed for interpreting the segregation of the merodiploids, the transmission of the diploid state and its generation during transformation of the ilvA4 marker by wild-type DNA.  相似文献   

14.
Japanese quail embryos normally have longitudinal black and brown stripes formed by colored feather buds on their back whereas an autosomal dominant mutation, black at hatch (Bh), disrupts this pigmentation pattern by causing overall black and brown coating in heterozygotes and homozygotes, respectively. These phenotypes of the Bh mutant embryos suggest that the Bh locus plays an important role in the pigment pattern formation of plumage, but its genetic origin, including cloning of the responsible gene, has been insufficiently studied. In this study, we adapted genetically directed representational difference analysis with elimination of excessive clones (GDRDA-WEEC) to Bh quails and isolated two genetic markers linked to the Bh locus as DNA fragments. Cytogenetic study by fluorescence in situ hybridization (FISH) of the DNA fragments used as probes demonstrated that the marker loci were located in the same region on the long arm of chromosome 1. Close genetic linkage between the Bh and the marker loci, and the chromosomal location of the latter suggested that the Bh locus is located on the long-arm of chromosome 1 of the Japanese quail.  相似文献   

15.
A mutation in Bacillus subtilis call recC4 which results in an impairment of genetic transformation was transferred to a new strain using the closely linked marker mit-2 (mitomycin C-resistance) for selection. This derived strain was in turn impaired in transformation but showed normal levels of sensitivity to ultraviolet irradiation and methyl methane sulfonate. The genetic and molecular fate of transforming DNA in the recC4 strain was studied. Normal amounts of DNA were taken up by the cells and this DNA or parts of it became associated with recipient DNA. Linkage between genes on donor and recipient molecules was, however, not established and transformants were not generated. The recC4 mutation therefore affects a step in the recombination pathway during transformation. Either the association between donor and recipient DNA molecules is abnormal or the cells are deficient in the further processing of the associated complex.  相似文献   

16.
A Pneumococcal mutant, sulr-c, resistant to sulfonamides, and three transformants bearing associated d or d+ resistance markers have earlier been reported to be unstable and show distinct patterns and frequencies of segregating stable progeny lacking the c marker. Each of the four strains showed a characteristic dosage of the genes involved in the merodiploidy. Complementary strands of DNA's from these stable and unstable strains were resolved and homoduplex and heteroduplex hybrids made from the separated DNA strands were used as donors in genetic transformations. Activities of a normal marker (streptomycin resistance) and those involved in the heterozygosity (c, d and d+) were quantitatively measured. From those heteroduplexes made up of opposite strands derived from a heterozygote and a stable strain, the normal marker is transferred efficiently, but the heterozygous markers are not. On the other hand, if both strands of a heteroduplex are derived from different heterozygotic strains, all markers can be transferred with usual efficiency to a stable recipient strain. The lowered efficiency in the former type of heteroduplex is attributed to an inhomology resulting from a tandem duplication in the merodiploid strains, and a postulated DNA repair process stimulated by it while in the form of the donor duplex. The inhomology probably includes (a) a microheterogeneity between the c site and the wild type locus, and (b) a more extensive incompatibility attributable to an extra segment of genome in a tandem duplication covering the c and d sites. The first of these inhomologies produces a lowered efficiency of transfer from all configurations of the particular d allele associated with the mutant c marker, and therefore accounts for the characteristic transfer patterns even from the native merodiploid DNA's.  相似文献   

17.
Summary The use of heteroduplex DNA molecules as donors in pneumococcal transformation makes it possible to follow the fate of each DNA strand. The integration efficiency of each strand depends strongly upon the single base changes it carries. The function (hex) which reduces drastically the transformation yield of markers referred to as low efficiency (LE) tends to remove either donor strand without respect to which one is introduced. In the case of high efficiency (HE) markers the reduction in the transformation yield involves the elimination of only one donor strand. For a given locus it can be either one depending upon the mutation. The reduction in transformation yield can be less drastic for HE markers than for both strands of the LE markers. These data are discussed in terms of differences in the affinity for mismatched base pairs.We have studied the transfer of information from each donor DNA strand to the recipient genome, on the basis of differences in the rates of phenotypic expression of a given marker introduced on opposite strands. Results show that, as in the case of LE markers, the information from HE markers, when introduced on the strand recognized by the hex function, is transmitted to both strands of the recipient molecule. Correction of the recipient strand to homozygosis probably accounts for this information transfer. These results, together with earlier investigations, strongly suggest that the hex function is an excision-repair system acting on donor-recipient base pair mismatches.  相似文献   

18.
In contrast to the high accumulation in sequence data for hyperthermophilic archaea, methodology for genetically manipulating these strains is still at an early stage. This study aimed to develop a gene disruption system for the hyperthermophilic euryarchaeon Thermococcus kodakaraensis KOD1. Uracil-auxotrophic mutants with mutations in the orotidine-5'-monophosphate decarboxylase gene (pyrF) were isolated by positive selection using 5-fluoroorotic acid (5-FOA) and used as hosts for further transformation experiments. We then attempted targeted disruption of the trpE locus in the host strain by homologous recombination, as disruption of trpE was expected to result in tryptophan auxotrophy, an easily detectable phenotype. A disruption vector harboring the pyrF marker within trpE was constructed for double-crossover recombination. The host cells were transformed with the exogenous DNA using the CaCl(2) method, and several transformants could be selected based on genetic complementation. Genotypic and phenotypic analyses of a transformant revealed the unique occurrence of targeted disruption, as well as a phenotypic change of auxotrophy from uracil to tryptophan caused by integration of the wild-type pyrF into the host chromosome at trpE. As with the circular plasmid, gene disruption with linear DNA was also possible when the homologous regions were relatively long. Shortening these regions led to predominant recombination between the pyrF marker in the exogenous DNA and the mutated allele on the host chromosome. In contrast, we could not obtain trpE disruptants by insertional inactivation using a vector designed for single-crossover recombination. The gene targeting system developed in this study provides a long-needed tool in the research on hyperthermophilic archaea and will open the way to a systematic, genetic approach for the elucidation of unknown gene function in these organisms.  相似文献   

19.
The mutation causing cystic fibrosis (CF) has been localized to the DNA sequence of 700 kb bounded by the loci identified by the markers pMP6d-9 (D7S399) and pJ3.11 (D7S8). A 560-kb fragment obtained after SacII digestion of DNA from a cell line containing this region of human chromosome 7 in a mouse background was separated using pulse-field gel electrophoresis and isolated from the gel. The DNA was digested with BamHI prior to cloning into lambda EMBL3. Approximately 0.1% of the resulting clones contained human repetitive sequences, and 24 such recombinants were studied. Of these, 23 are on chromosome 7; 8 clones were duplicated, and of the 15 different recombinants, 7 are between MET and INT1L1, and a further 7 are between INT1L1 and pMP6d-9, leaving a single marker, pG2, which is between pMP6d-9 and pJ3.11. pG2 recognizes an RFLP with XbaI. A cosmid walk from pG2 has generated a further marker, H80, which recognizes an RFLP with PstI. This new locus (D7S411) divides the remaining region between the CF flanking markers, thereby making it more accessible to fine pulse-field mapping and allowing the precise localization of further clones to this region. Although it is not possible to position the CF locus unequivocally with respect to D7S411, both polymorphic markers at this locus exhibit low but significant linkage disequilibrium with CF, placing the emphasis for the search for the gene on the D7S399 to D7S411 interval of 250 kb.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号