首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Pneumococcal mutant, sulr-c, resistant to sulfonamides, and three transformants bearing associated d or d+ resistance markers have earlier been reported to be unstable and show distinct patterns and frequencies of segregating stable progeny lacking the c marker. Each of the four strains showed a characteristic dosage of the genes involved in the merodiploidy. Complementary strands of DNA's from these stable and unstable strains were resolved and homoduplex and heteroduplex hybrids made from the separated DNA strands were used as donors in genetic transformations. Activities of a normal marker (streptomycin resistance) and those involved in the heterozygosity (c, d and d+) were quantitatively measured. From those heteroduplexes made up of opposite strands derived from a heterozygote and a stable strain, the normal marker is transferred efficiently, but the heterozygous markers are not. On the other hand, if both strands of a heteroduplex are derived from different heterozygotic strains, all markers can be transferred with usual efficiency to a stable recipient strain. The lowered efficiency in the former type of heteroduplex is attributed to an inhomology resulting from a tandem duplication in the merodiploid strains, and a postulated DNA repair process stimulated by it while in the form of the donor duplex. The inhomology probably includes (a) a microheterogeneity between the c site and the wild type locus, and (b) a more extensive incompatibility attributable to an extra segment of genome in a tandem duplication covering the c and d sites. The first of these inhomologies produces a lowered efficiency of transfer from all configurations of the particular d allele associated with the mutant c marker, and therefore accounts for the characteristic transfer patterns even from the native merodiploid DNA's.  相似文献   

2.
We report the development of techniques for the genetic mapping of point mutations in the bacterial pathogen Bordetella pertussis. A plasmid vector which is self-transmissible by conjugation and which, by insertion into the B. pertussis chromosome, can mobilize chromosomal sequences during conjugation with a recipient B. pertussis bacterium has been constructed. This vector is used in conjunction with a set of strains containing kanamycin resistance gene insertions at defined physical locations in the B. pertussis genome. In crosses between these donor strains and a mutant recipient strain, transfer of a chromosomal segment flanking the kanamycin resistance gene insertion is selected for, and the percentage of exconjugants which reacquire the wild-type trait is scored. In this way the linkage of the mutant allele to these markers, and thus the approximate chromosomal position of the mutant allele, is determined. We have used this genetic system to map a newly described locus in B. pertussis involved in the regulation of the virulence genes ptx (pertussis toxin) and cya (adenylate cyclase toxin).  相似文献   

3.
Rifampicin resistant spontaneous mutant of a popular laboratory strain of Escherichia coli (DH5 alpha) was isolated and found to resist high level of the drug in growth medium. The growth of the isolate was found to be slower than its wild-type counterpart. Its ability to get transformed into drug-resistant state through transformation by chemical means as tested using plasmid DNA from three different size categories, was found to be at par with the wild type. Other properties, viz., alpha-complementation and ability to express foreign gene remained unaltered. The utility of the rifampicin-resistant phenotype as a potential chromosomal genetic marker was demonstrated in a typical conjugation experiment to establish the ability of the mutant to act as recipient strain for a recombinant, mobilizable plasmid DNA molecule with the advantage of drug-mediated, high efficiency selection. Substitution of the wild strain with the mutant for routine experimentations related to recombinant DNA technology was concluded to be appropriate and of advantage.  相似文献   

4.
We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or "pop-out," of the selected marker. We used this method to construct a "markerless" deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene.  相似文献   

5.
Transformation of the pneumococcus mutant 401 by DNA's bearing the standard reference marker and several other markers belonging to two unlinked loci has shown that differences in the integration efficiencies of these markers were considerably reduced in this strain compared to the wild-type strain Cl(3). The sensitivities of mutant 401 to ultraviolet light and to X-ray irradiation are the same as those of Cl(3). However, in 401 all the markers tested are more resistant to inactivation as shown by transformation of 401 and Cl(3) by ultraviolet-irradiated DNA. The increase in resistance is greater for low efficiency (LE) markers than for high efficiency (HE) markers.-The decreased discrimination between LE and HE markers in strain 401 is not due to a mechanism related to modification of markers in the transforming DNA by the recipient cells, nor are the proteins inducing competence of the cells responsible for the differences in the integration efficiencies of various markers.-Genetic studies of the fate of recombinants as well as the measure of the amount of DNA taken up have shown that all the markers are integrated in strain 401 by the same recombination process, that specific to high efficiency markers.  相似文献   

6.
Mutants with a defective non-homologous-end-joining (NHEJ) pathway have boosted functional genomics in filamentous fungi as they are very efficient recipient strains for gene-targeting approaches, achieving homologous recombination frequencies up to 100%. For example, deletion of the ku70 homologous gene kusA in Aspergillus niger resulted in a recipient strain in which deletions of essential or non-essential genes can efficiently be obtained. To verify that the mutant phenotype observed is the result of a gene deletion, a complementation approach has to be performed. Here, an intact copy of the gene is transformed back to the mutant, where it should integrate ectopically into the genome. However, ectopic complementation is difficult in NHEJ-deficient strains, and the gene will preferably integrate via homologous recombination at its endogenous locus. To circumvent that problem, we have constructed autonomously replicating vectors useful for many filamentous fungi which contain either the pyrG allele or a hygromycin resistance gene as selectable markers. Under selective conditions, the plasmids are maintained, allowing complementation analyses; once the selective pressure is removed, the plasmid becomes lost and the mutant phenotype prevails. Another disadvantage of NHEJ-defective strains is their increased sensitivity towards DNA damaging conditions such as radiation. Thus, mutant analyses in these genetic backgrounds are limited and can even be obscured by pleiotropic effects. The use of sexual crossings for the restoration of the NHEJ pathway is, however, impossible in imperfect filamentous fungi such as A. niger. We have therefore established a transiently disrupted kusA strain as recipient strain for gene-targeting approaches.  相似文献   

7.
The mutant RP4ts12, derived from the R-factor RP4 and thermosensitive in replication, is incorporated into the chromosome A3dna(ts) of E. coli K12, thus suppressing dnaA mutation. The integration of this factor into the chromosome leads to the formation of Hfr strains of two types: the strains of the first type transfer plasmid markers to recipient cells earlier than to chromosomal ones; the strains of the second type transfer plasmid markers to recipient cells after chromosomal ones. During conjugation the R-factor integrated into the chromosome dissociates from chromosomal DNA introduced into the recipient cell and becomes autonomous.  相似文献   

8.
Transformation experiments with Bacillus subtilis strains carrying trpE26 (the marker responsible for the detection of merodiploid clones after transformation or transduction) have established the precise position of this marker on the "aromatic region" of the chromosome, at the distal end of the anthranilate synthetase locus. Integration efficiency of the mutant allele (trpE26) seems to be very low. Co-transfer of markers situated on either side of it is almost nil when both donor and recipient carry this mutation. The "exclusion" of trpE26 does not, however, affect recombination frequencies for nearby markers. To explain these facts we considered the hypothesis of a preferential breakage of the deoxyribonucleic acid (DNA) at the trpE26 site or that of an insertion mutation. These studies have also demonstrated the establishment of physical linkage of a marker from the exogenote (hisH2) to a resident marker (tyrA1) in stable and unstable merodiploid clones, thus confirming integration of the donor DNA segment into a genetic structure of the recipient. Furthermore, duplication was shown in merodiploid clones (through reversion and transformation) for a locus of the recipient (tyrA) which was not involved in the initial transformation. This suggests that the diploid condition in this region extends beyond the transformed area. Interpretation of the genetic constitution of these partial diploids calls for postulation of the existence of long duplications, a second (incomplete) chromosome, or an episome-like element.  相似文献   

9.
Transformation of Acinetobacter calco-aceticus (Bacterium anitratum)   总被引:44,自引:23,他引:21       下载免费PDF全文
A highly efficient transformation system has been demonstrated in a strain of Acinetobacter calco-aceticus (Bacterium anitratrum). During mixed growth of various stable, unencapsulated, mutant strains, deoxyribonucleic acid (DNA) is liberated and fully encapuslated transformants can be isolated. Purified DNA preparations have been used to transform suitable recipient mutant strains for ability to synthesize capsules, ability to dispense with a growth factor requirement, and resistance to streptomycin. When the wild-type strain is deprived of its capsule, either by mechanical stripping or by mutation, the unencapsulated cells tend to form large clumped masses. A nonclumping mutant of an unencapsulated strain has been isolated. When ability to synthesize capsules is transformed into this nonclumping strain, the resultant cells no longer form chains, unlike the wild-type encapsulated strain. It appears likely that the occurrence of transformation during growth of mixed cultures, with glucose or gluconate as the carbon source, may be the result of osmotic rupture resulting from the inability of unencapsulated strains to oxidize triose phosphates as fast as they are formed. The finding of transformation in Acinetobacter may provide an additional useful organism for the study of this mode of genetic transfer since this strain grows well in a simple mineral medium containing a single oxidizable source of carbon. Furthermore, no special supplementary factors seem to be required for transformation to take place.  相似文献   

10.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the phiC31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of phiC31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

11.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

12.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

13.
A mutant of Escherichia coli K12, highly resistant to ultraviolet radiation, has been isolated. Preliminary tests show that this mutant is also resistant to mitomycin C, nalidixic acid, fluorouracil and thymineless death. The mutant strain apparently repairs its damaged DNA more efficiently than wild-type E. coli K12 strains and, to do so, constitutively produces 35 times more DNA polymerase I and 12 times more endonuclease I than the wild-type strain.  相似文献   

14.
Cells cope with radiation damage through several mechanisms: (1) increased DNA repair activity, (2) scavenging and inactivation of radiation-induced radical molecules, and (3) entry into a G0-like quiescent state. We have investigated a chromosomal rearrangement to elucidate further the molecular and genetic mechanisms underlying these phenomena. A mutant of Escherichia coli JM83 (phi 80dlacZ delta M15) was isolated that demonstrated significantly increased resistance to both ionizing and ultraviolet radiation. Surviving fractions of mutant and wild-type cells were measured following exposure to standardized doses of radiation. Increased radioresistance was directly related to a chromosomal alteration near the bacteriophage phi 80 attachment site (attB), as initially detected by the LacZ- phenotype of the isolate. Southern hybridization of chromosomal DNA from the mutant and wild-type E. coli JM83 strains indicated that a deletion had occurred. We propose that the deletion near the attB locus produces the radioresistant phenotype of the E. coli JM83 LacZ- mutant, perhaps through the alteration or inactivation of a gene or its controlling element(s).  相似文献   

15.
A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination.  相似文献   

16.
We describe an improved allelic-exchange method for generating unmarked mutations and chromosomal DNA alterations in enterobacterial species. Initially developed for use in Salmonella enterica, we have refined the method in terms of time, simplicity, and efficiency. We have extended its use into related bacterial species that are more recalcitrant to genetic manipulations, including enterohemorrhagic and enteropathogenic Escherichia coli and Vibrio parahaemolyticus. Data from over 50 experiments are presented including gene inactivations, site-directed mutagenesis, and promoter exchanges. In each case, desired mutations were identified by polymerase chain reaction screening typically from as few as 10-20 colonies up to a maximum of 300 colonies. The method does not require antibiotic nor nutritional markers in target genes and works efficiently in wild-type strains, obviating the need for specialized hosts or genetic systems. The use is simple, requiring basic laboratory materials, and represents an alternative to existing methods for gene manipulation in the Enterobacteriaceae.  相似文献   

17.
Transforming deoxyribonucleic acid (DNA) preparations from Haemophilus influenzae Rd strains carrying a chromosomally integrated, conjugative, antibiotic resistance transfer (R) plasmid were exposed to ultraviolet radiation and then assayed for antibiotic resistance transfer on sensitive wild-type Rd competent suspensions and on similar suspensions of a uvr-1 mutant unable to excise pyrimidine dimers. No host cell reactivation of resistance transfer (DNA repair) was observed. Parallel experiments with ethanol-precipitated, heated, free R plasmid DNA preparations gave much higher survival when assayed on the wild-type strain compared to the survival on the uvr-1 strain. These observations indicate that additive genetic transformation (in this case, the addition of the integrated R plasmid to the recipient genome) involves single-strand insertion.  相似文献   

18.
19.
A procedure was developed to isolate insertions of transposon Tn551 near other markers of interest on the chromosome of Staphylococcus aureus NCTC 8325. When an inoculum of strain 8325-4 carrying a thermosensitive mutant of plasmid pI258 (on which Tn551 resides) was inoculated into brain heart infusion agar plus erythromycin and grown to saturation at 43 degrees C, the transforming DNA extracted from this population of cells contained a random collection of different chromosomal insertions of Tn551; this DNA is referred to as pooled Tn551 DNA. When erythromycin-sensitive recipient strains containing chromosomal markers of interest were transformed with pooled Tn551 DNA, and the resulting Emr transformants were screened for coinheritance of the donor allele of the marker of interest, insertions of Tn551 were isolated near several markers, including fus-149, tet-3490, mec-4916, pig-131, ilv-129, pur-140, and uraA141. Many of the insertions were within the linkage groups that contained these markers, and several insertions occupied different positions between the linkage groups in heretofore undefined regions of the circular chromosomal map of S. aureus. These insertions of transposon Tn551 extend the known limits of the existing linkage groups, provide linkage data and map locations for markers not previously mapped, and provide a means to map markers which cannot be directly selected.  相似文献   

20.
Functional analysis of cloned genes often makes use of complementation after introducing these genes into cells of a mutant strain. Problems with this self-cloning step in the cyanobacterium Anacystis nidulans R2 have been encountered, which were mainly due to recombinational instability of gene and vector after transformation. Therefore, conditions determining the exchange of material between chromosome, insert and plasmids were studied to achieve the necessary stability. The fate of plasmid pME1, containing a wild-type methionine gene from A. nidulans R2, was investigated after its introduction into a Tn901-induced methionine mutant strain as recipient, so that the mutant chromosomal gene could be distinguished from the plasmid-borne wild-type copy. Two different recipients were constructed, one containing and one lacking the resident plasmid pCH1, which is a derivative of the indigenous small plasmid pUH24. When using the pCH1-free strain and with combined selection for both wild-type gene and vector, the original configuration of the genes in chromosome and vector was retained in the majority of the transformed cells, while the remaining transformants were reciprocal recombinants; under conditions of single selection mainly nonreciprocal recombination or loss of the vector was observed. When the recipient strain contained pCH1 additional recombinational events took place. The results show that under appropriate conditions a chromosomal gene cloned on a plasmid vector can be stably maintained in a majority of the transformants, thus making self-cloning experiments feasible in A. nidulans R2. On the other hand, the introduction of foreign DNA into the chromosome can be achieved by deliberately exploiting recombination between chromosome and plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号